THE DUAL TREE OF A RECURSIVE TRIANGULATION OF THE DISK

Henning Sulzbach, INRIA Paris-Rocquencourt

Journées Alea, Luminy, March 2014

joint work with Nicolas Broutin (INRIA)

Outline

1. The model and its background

2. Main results

3. Variations of the scheme

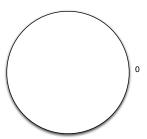
Outline

1. The model and its background

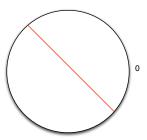
2. Main results

3. Variations of the scheme

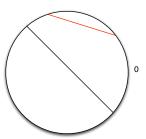
Curien and Le Gall 2011:



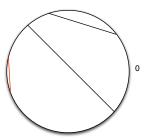
Curien and Le Gall 2011:



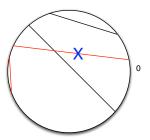
Curien and Le Gall 2011:



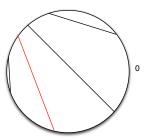
Curien and Le Gall 2011:



Curien and Le Gall 2011:



Curien and Le Gall 2011:



Curien and Le Gall 2011:

In each step, connect two uniformly chosen points unless the chord intersects any previously inserted.

Number of inserted chords at time *n* is about $\sqrt{\pi n}$.

Lamination: $L_n = \text{set of inserted chords at time } n$.

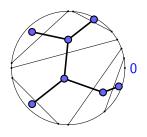
The limit triangulation

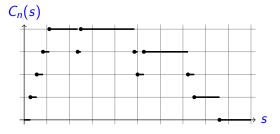
Theorem (Curien, Le Gall)

 $\mathcal{L}_{\infty} := \overline{\bigcup_{n \geq 1} L_n}$ is a triangulation, that is, its complement consists of triangles with vertices on the circle.

Observe: Triangulations are maximal, that is, they cannot be increased by additional chords.

The dual tree





 T_n : dual tree, d_{gr} : graph distance on T_n .

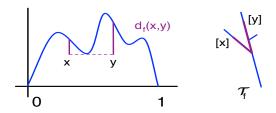
 $C_n(s) = \text{depth of node at } s \in [0,1] \text{ in } T_n.$

Scaling limit of the dual tree T_n ?

Scaling limit of the contour process $C_n(s)$?

Trees encoded by excursions

Let $f:[0,1]\to\mathbb{R}^+$ be a continuous excursion.



$$\mathcal{T}_f = [0,1]/_{\sim}$$
 where $s \sim t$ with $s \leq t$ if $d_f(s,t) = 0$ where

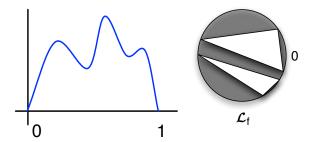
$$d_f(s,t) = f(s) + f(t) - 2\inf\{f(x) : s \le x \le t\}.$$

 (\mathcal{T}_f, d_f) is a compact tree-like metric space (an \mathbb{R} -tree).

Triangulations encoded by excursions

Let $f:[0,1]\to\mathbb{R}^+$ be a continuous excursion with *distinct* local minima.

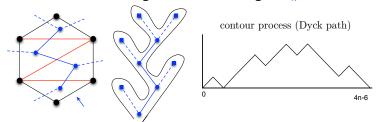
 \mathcal{L}_f contains chords connecting $s \leq t$ if and only if $d_f(s,t) = 0$.



Inner nodes of \mathcal{T}_f correspond to triangles in \mathcal{L}_f .

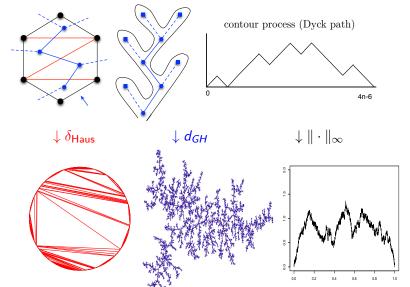
The Brownian world - Aldous '94

Consider uniform triangulations of the n-gon P_n :



The Brownian world - Aldous '94

Consider uniform triangulations of the n-gon P_n :



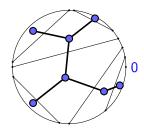
Outline

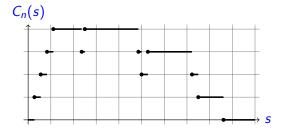
1. The model and its background

2. Main results

3. Variations of the scheme

The dual tree of the lamination





 $C_n(s) = \text{depth of node at } s \in [0,1] \text{ in } T_n.$

Theorem (Broutin, S. '14)

There exists a random continuous process Z(s), $s \in [0,1]$, such that, uniformly in $s \in [0,1]$, almost surely,

$$\frac{C_n(s)}{n^{\beta/2}} \to Z(s), \qquad \beta = \frac{\sqrt{17}-3}{2} = 0.561...$$

The dual tree of the lamination

Theorem (Broutin, S. '14)

There exists a random continuous process Z(s), $s \in [0,1]$, such that, uniformly in $s \in [0,1]$, almost surely,

$$\frac{C_n(s)}{n^{\beta/2}} \to Z(s), \qquad \beta = \frac{\sqrt{17}-3}{2} = 0.561...$$

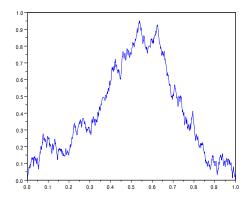
Moreover, $\mathcal{L}_{\infty} = \mathcal{L}_{Z}$ (already proved by Curien and Le Gall).

Almost surely,

$$(T_n, n^{-\beta/2}d_{gr}) \rightarrow (\mathcal{T}_Z, d_Z)$$

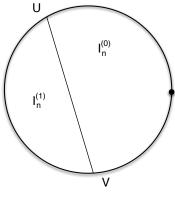
in the Gromov-Hausdorff topology on the space of (isometry classes of) compact metric spaces.

A simulation of the limit



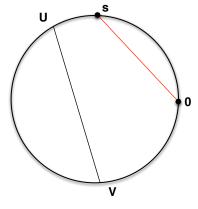
$$\mathbb{E}\left[Z(s)\right] \sim (s(1-s))^{\beta}$$

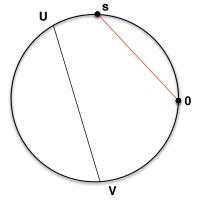
Optimal Hölder exponent: $\beta = 0.561...$



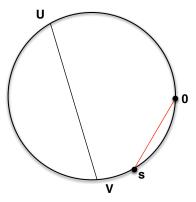
Attempted insertions in subfragments

$$\begin{array}{c}
\mathbf{0} \ I_n^{(0)} \stackrel{d}{=} \operatorname{Bin}(n-1, (1-(V-U))^2) \\
&\sim n(1-(V-U))^2 \\
I_n^{(1)} \stackrel{d}{=} \operatorname{Bin}(n-1, (V-U)^2) \\
&\sim n(V-U)^2
\end{array}$$

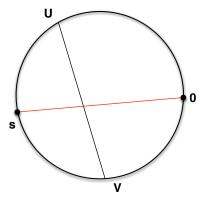




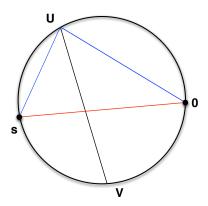
$$C_n(s) \stackrel{d}{=} \mathbf{1}_{[0,U]}(s) C_{l_0^{(n)}}^{(0)} \left(\frac{s}{1 - (V - U)} \right)$$



$$C_n(s) \stackrel{d}{=} \mathbf{1}_{[0,U]}(s) C_{l_0^{(n)}}^{(0)} \left(\frac{s}{1 - (V - U)} \right) + \mathbf{1}_{(V,1]}(s) C_{l_0^{(n)}}^{(0)} \left(\frac{s - (V - U)}{1 - (V - U)} \right)$$



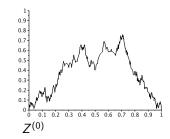
$$C_n(s) \stackrel{d}{=} \mathbf{1}_{[0,U]}(s) C_{l_0^{(n)}}^{(0)} \left(\frac{s}{1 - (V - U)} \right) + \mathbf{1}_{(V,1]}(s) C_{l_0^{(n)}}^{(0)} \left(\frac{s - (V - U)}{1 - (V - U)} \right)$$

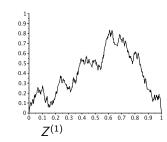


$$C_{n}(s) \stackrel{d}{=} \mathbf{1}_{[0,U]}(s) C_{l_{0}^{(n)}}^{(0)} \left(\frac{s}{1 - (V - U)}\right) + \mathbf{1}_{(V,1]}(s) C_{l_{0}^{(n)}}^{(0)} \left(\frac{s - (V - U)}{1 - (V - U)}\right) + \mathbf{1}_{(U,V]}(s) \left(1 + C_{l_{0}^{(n)}}^{(0)} \left(\frac{U}{1 - (V - U)}\right) + C_{l_{1}^{(n)}}^{(1)} \left(\frac{s - U}{V - U}\right)\right)$$

Characterizing **Z**

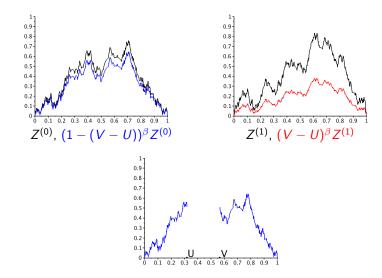
(U, V) min and max of two ind. uniforms, here U = 0.32, V = 0.56





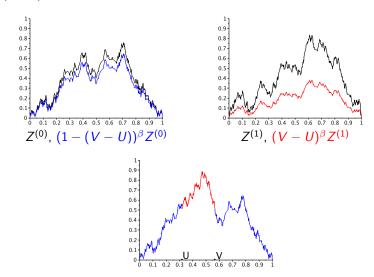
Characterizing Z

(U, V) min and max of two ind. uniforms, here U = 0.32, V = 0.56



Characterizing Z

(U, V) min and max of two ind. uniforms, here U = 0.32, V = 0.56



The fractal dimension

Theorem (Broutin, S.)

Almost surely, we have $\dim(\mathcal{T}_Z) = \frac{1}{\beta} = 1.781...$ both for Minkowski and Hausdorff dimension.

Compare: $\dim(\mathcal{T}_e) = 2$ for the CRT.

Very roughly, $\dim(\mathcal{T}_f) = s$ means that, as $r \to 0$,

$$|B_r(x)| \approx r^s$$

with

$$B_r(x) = \{ y \in \mathcal{T}_f : d_f(x, y) < r \}.$$

Outline

1. The model and its background

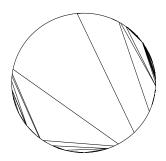
2. Main results

3. Variations of the scheme

A homogeneous model

In each step

- choose one fragment uniformly at random
- insert a chord uniformly at random



Observe: $l_0^{(n)}$ is uniformly distributed (Polya urn!), hence

$$\frac{I_0^{(n)}}{n}\to W,\quad n\to\infty,$$

where W is uniform on [0,1] and independent of (U,V).

A homogeneous model

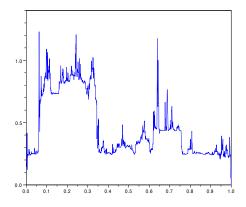
Theorem (Broutin, S. '14)

There exists a random continuous process H(s), $s \in [0,1]$, such that, uniformly in $s \in [0,1]$, almost surely,

$$\frac{C_n^h(s)}{n^{1/3}}\to H(s).$$

Moreover, $\mathbb{E}[H(s)] \sim (s(1-s))^{1/2}$.

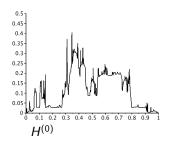
A simulation of H

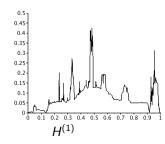


Optimal Hölder exponent: $\frac{3-2\sqrt{2}}{3} = 0.057...$

The characterization of H

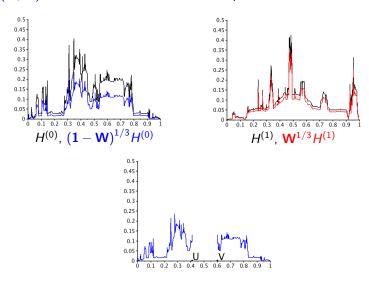
(U, V): as before and W another independent uniform.





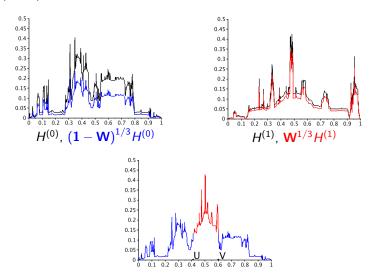
The characterization of H

(U, V): as before and W another independent uniform.



The characterization of H

(U, V): as before and W another independent uniform.



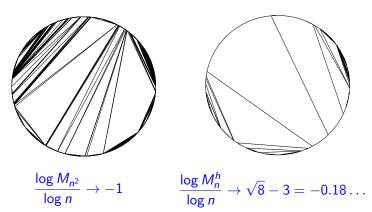
The fractal dimension

Theorem (Broutin, S.)

Almost surely, we have $dim(T_H) = 3$ both for Minkowski and Hausdorff dimension.

The last slide

Note: L_{n^2} and L_n^h and their dual trees are significantly different.



On the other hand: $\mathcal{L}_H = \mathcal{L}_Z$, dim $\mathcal{L}_Z = 1 + \beta$.

References

- D. Aldous. Triangulating the circle, at random. Amer. Math. Monthly, 101: 223–233, 1994
- D. Aldous. Recursive self-similarity for random trees, random triangulations and Brownian excursion. *Ann. Probab.*, 22: 527–545, 1994
- N. Curien and J.-F. Le Gall. Random recursive triangulations of the disk via fragmentation theory. *Ann. Probab.*, 39: 2224-2270, 2011
- N. Broutin and H. Sulzbach. The dual tree of a recursive triangulation of the disk. to appear in Ann. Probab., 2014

Merci bien