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Algorithms is coding
Complex analysis is only for the analysis of algorithms

(and, in fact, only the very fine structure of it)
If I’m happy with rough estimates
and heuristic performance analysis,

I can just live without

A first example: in the Boltzmann method you need complex
analysis in the preprocessing, for finding “the value of the oracle”

In this talk you see a more striking example: complex analysis is
used all the time along the core part of the algorithm

Moral: if complex analysis “knows the truth” on the asymptotics
of your random structures, (and it’s the only one who knows),

no surprise that algorithms not using it have worse performances. . .
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Part 1
An introduction to

Exact Sampling

(with a zest of
Statistical Mechanics)
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Exact sampling

Our goal today is the exact sampling
of large random combinatorial structures.

Large: “size n”. We want to do that fast.

In many cases, it is obvious that you can do that
in T (n) ∼ exp(αn) or T (n) ∼ exp(αn ln n).

And you are much happier with a polynomial algorithm, T (n) ∼ nγ .

This is what happens, for example, with Coupling From The Past
of Propp and Wilson (used e.g. for the Potts Model), or with
Wilson’s cycle-popping algorithm for Uniform Spanning Trees.

However, if the problem is easy, we want to do that really fast:
in quasi-linear time T (n) ∼ n · (ln n)γ .
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A prototype of easy problem

What do we mean by “if the problem is easy” ?

A typical example of an easy problem is directed walks.
Let’s do that in D = 2, just to be definite.

You have some “nice” functions hx ,y , vx ,y : N2 → R+,
and you want to sample paths ω : (0, 0)→ (n −m,m),

according to the unnormalised measure

µ(ω) =
∏
•↑ (x,y)

vx ,y
∏

(x,y) •→
hx ,y

Examples:
• directed walks (binomials): hx ,y = vx ,y = 1.

4

• directed walks weighted with their area (q-binomials):

4

hx ,y = qy ; vx ,y = 1.
• P(n,m) ≡ partitions of [n] into m parts (Stirling of 2nd kind):

8

hx ,y = y ; vx ,y = 1.
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A prototype of easy problem

1� `� n

At scales 1� `� n,
a typical path looks
like a random walk,
with some drift, diffu-
sion constant and ver-
tical offset.

(here (n,m) = (500, 267), hx ,y = (1.03)y , vx ,y = x)

Why this problem must be easy?
Because its asymptotics is given by calculus of variations in 1D:

Call U
( x+y

2 , y−x2 ) = 1
2 ln(vx ,y−1/hx−1,y )

Call V
( x+y

2 , y−x2 ) = 1
2 ln(vx ,y−1 · hx−1,y )

Call s(x) = −1+x
2 ln 1+x

2 −
1−x

2 ln 1−x
2

(Shannon entropy of a binary stream with probabilities 1±x
2 )

Then the limit profile φ(t) maximizes the functional

Sλ[φ] =

∫ 1

0
dt
[
s(φ′(t)) + λφ′(t) + φ′(t)U(t, φ(t)) + V (t, φ(t))

]
with λ determined by the constraint E(φ(1)) = 2m−n

n .

Finally, Zn,m = exp
(
(n − 2m)λ+ nS [φ∗] + o(n)

)
.
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A digression on Random Minimal Automata

Why shall we care of (inhomogeneous) directed random walks?
Because sometimes they are in bijection with more interesting objects

For n = km + 1, a O(1) subset of this set (those which are
“k-Dyck”) is in bijection with accessible deterministic complete

automata (ADCA), with m states and alphabet of size k.
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In our case, directed paths with hx ,y = y can be interpreted
as paths ω, × a choice Y (x) ∈ {1, . . . , y(x)} per horizontal step.

Pairs (ω,Y ) are in bijection with π ∈ P(n,m),
i.e. partitions of [n] into m non-empty blocks.

For n = km + 1, a O(1) subset of this set (those which are
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A digression on Random Minimal Automata

A O(1) fraction of P(km + 1,m) (k-Dyck partitions)
is in bijection with ADCA’s, on m states and alphabet of size k .

Those which are not k-Dyck, with probability 1− exp(−cs)/
√

s
cross the diagonal within the last s steps.

Thus, in a sampling algorithm “starting from the top-left corner”
(as will be our own), are sampled quite efficiently through

anticipated rejection.
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A digression on Random Minimal Automata

A O(1) fraction of ADCA’s (in fact, 1− o(1) if k ≥ 3) are minimal.

At k = 2, if we use a modified walk, taking columns in pairs, and
steps with weights w(↗,→,↘) = (1, 2y , y 2−βx) (no pairs of
columns have the same marks, and boolean status), we get a

fraction 1− o(1) of minimal automata within ADCA’s

|P(km + 1,m)| =

{
km + 1

m

}
∼ (km + 1)!

m!
exp(m · a(k))

∼ 2(k−1)m log2 m exp(m · a′(k))

The complexity for the sole Buffon procedure for sampling the
“black marks” is ∼ 2(k−1)m〈log2 y〉 ∼ 2(k−1)m log2 m exp(m · a′′(k))

ý if we have an exact sampling algorithm for ω : (0, 0)→ (αm,m)
with complexity o(m ln m), we have an optimal exact sampling

algorithm for random uniform minimal automata on any alphabet size.

Thus, if we have quasi-linear exact sampling algorithm for ω,
we have a quasi-linear exact sampling algorithm

for random uniform minimal automata.
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Directed walks: recursion for Z

Let us call Zn,m the normalisation factor

µ(ω) =
∏
•↑ (x,y)

vx ,y
∏

(x,y) •→
hx ,y Zn,m =

∑
ω:(0,0)→(n−m,m)

µ(ω)

(Z stands for “Zustandssumme”, as first introduced
by our Austrian friend Ludwig Boltzmann. . . )
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Directed walks: recursion for Z

Let us call Zn,m the normalisation factor

µ(ω) =
∏
•↑ (x,y)

vx ,y
∏

(x,y) •→
hx ,y Zn,m =
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Zn,m = vn−m,m−1 Zn−1,m−1 + hn−m−1,m Zn−1,m

= +
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Directed walks: recursion for Z

Let us call Zn,m the normalisation factor

µ(ω) =
∏
•↑ (x,y)

vx ,y
∏

(x,y) •→
hx ,y Zn,m =

∑
ω:(0,0)→(n−m,m)

µ(ω)

Of course we have

Zn,m = vn−m,m−1 Zn−1,m−1 + hn−m−1,m Zn−1,m

And in fact, for our three examples(
n

m

)
=

(
n − 1

m − 1

)
+

(
n − 1

m

)
;[

n

m

]
q

=

[
n − 1

m − 1

]
q

+ qm

[
n − 1

m

]
q

;{
n

m

}
=

{
n − 1

m − 1

}
+ m

{
n − 1

m

}
;
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Directed walks: recursion for Z

Let us call Zn,m the normalisation factor

µ(ω) =
∏
•↑ (x,y)

vx ,y
∏

(x,y) •→
hx ,y Zn,m =

∑
ω:(0,0)→(n−m,m)

µ(ω)

Of course we have

Zn,m = vn−m,m−1 Zn−1,m−1 + hn−m−1,m Zn−1,m

What’s the difference, then?
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Directed walks: recursion for Z

Let us call Zn,m the normalisation factor

µ(ω) =
∏
•↑ (x,y)

vx ,y
∏

(x,y) •→
hx ,y Zn,m =

∑
ω:(0,0)→(n−m,m)

µ(ω)

Of course we have

Zn,m = vn−m,m−1 Zn−1,m−1 + hn−m−1,m Zn−1,m

. . . let’s try to solve the recursion . . .(
n

m

)
=

n(n − 1) · · · (n −m + 1)

m(m − 1) · · · 1
;[

n

m

]
q

=
(1− qn)(1− qn−1) · · · (1− qn−m+1)

(1− qm)(1− qm−1) · · · (1− q)
;{

n

m

}
: no factorisation!
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An application of the recursive method

What can we do with a factorised formula?
We can perform an exact sampling through a Recursive Method. . .

A walk ω is a string (s1, . . . , sn) in {↑,→}n.

Define pn,m = Zn−1,m−1/Zn,m. Suppose you can evaluate pn,m

(exactly) through an oracle that requires a time τn.

This trivial algorithm
then has complexity ý

T (n) = Θ(n) +
∑n

i=1 τi
. n τn

n′ = n; m′ = m;
while n′ > 0 do

if Bernpn′,m′ then
sn′ =↑ ; m′ = m′ − 1;

else
sn′ =→ ;

end
end
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An application of the recursive method

The role of the factorised formulas
is in the production of the oracle Bernpn,m , with

pn,m = Zn−1,m−1/Zn,m.

reminder: (
n

m

)
=

n(n − 1) · · · (n −m + 1)

m(m − 1) · · · 1
;[

n

m

]
q

=
(1− qn)(1− qn−1) · · · (1− qn−m+1)

(1− qm)(1− qm−1) · · · (1− q)
;{

n

m

}
: no factorisation!

Thus, for binomials you need a Buffon machine for rationals
for q-binomials you need a Buffon machine for ratios of q-numbers,

but for Stirling of 2nd kind you are stuck!
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n − 1

m − 1

)/(
n

m

)
=

m

n
;[

n − 1

m − 1

]
q

/[
n

m

]
q
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1− qm
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n

m
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StatMech in a nutshell

Let us recall some basic “statistical physics”
(in combinatorial terms. . . ).

In our walks ω, we have fixed the arrival point m, within the range
m ∈ {0, 1, . . . , n} of possible values. Thus we are in the
canonical ensemble, with unnormalised measure µm(ω).

If we had walks ω with non-prescribed arrival point, by setting in
the grand-canonical ensemble. Doing this, we are naturally induced

to introduce a Lagrange multiplier, and have unnormalised
measure µλ(ω) =

∑
m eλmµm(ω).

In large n, marginals of finitely many extensive statistics are
dominated by saddle points: Z (x , y , . . .) ∼ exp

[
nF (ξ, η, . . .)

]
,

with ξ = x/n, η = y/n, . . .
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StatMech in a nutshell

In large n, marginals are dominated by saddle points:
Z (x , y , . . .) ∼ exp

[
nF (ξ, η, . . .)

]
and in particular, (call α = m/n)

Zλ(x , y , . . .) =
∑

m eλmZm(x , y , . . .) ∼
∫
dα exp

[
n(λα + F (ξ, η, . . . , α)

]
Laplace transform on Z is “tropicalised” into Legendre transform on F

(the (+,×) ring is transformed into (max,+))

The Legendre transform is involutive, (cf. Fourier analogous property)
but only if f is convex, otherwise you get the convexified of f .

BTW, this is the origin of phase coexistence in Nature
(liquid water and vapour coexisting at 100◦, instead of a mixture

with density 0.5 g/cm3).
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The Boltzmann method in a nutshell

The Boltzmann method for exact sampling works when:

I you have a sampler in the grand-canonical ensemble (but not
in the canonical one);

I your goal value α is in a region where the convexified of F (α)
coincides with F (α).

I you can find the appropriate “Legendre-dual” parameter
λ∗ = λ(α) (the “problem of the oracle”).

The law of large numbers is underlying here. Even at the optimal
value λ∗, you only get the random variable m′ = m +O(

√
m). The

complexity is, in the best of cases, T (n) ∼ n
3
2 .

If you ask more extensive statistics to have a certain given value,
you get a 1

2 in the exponent per parameter.

Still, you may have an algorithm. And it may be your best choice so far.

Andrea Sportiello The SPQR Method for exact sampling



An application of the Boltzmann method

Let’s see how this works for our directed walks. . .

Assume for simplicity that hx ,y = hy , and vx ,y = 1
Consider the grandcanonical ensemble of walks that have exactly
m ↑, and a variable number of →, with a Lagrange multiplier λ.

ω = (→ · · · →︸ ︷︷ ︸
c0

↑ → · · · →︸ ︷︷ ︸
c1

↑ . . . ↑ → · · · →︸ ︷︷ ︸
cm

)

thus we have µλ(c0, c1, . . . , cm) = eλ
∑

y cy
∏m

y=0 h
cy
y ,

and n = m +
∑

y cy .

Each cy is an independent geometric variable,

with average
eλhy

1−eλhy and variance
eλhy (1+eλhy )

(1−eλhy )2 .

Thus, λ(α) is the solution (if any) of the equation

α−1 := n
m = 1 +

〈
eλhy

1−eλhy

〉
0≤y≤m

=
〈

1
1−eλhy

〉
0≤y≤m

in the range λ ∈ (−∞,− ln max hy ).
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An application of the Boltzmann method

As α(λ) : (−∞,− ln max hy )→ (0, 1) is clearly smooth
and monotone, from LNN we get easily the existence and unicity

of a solution, and concentration.

This trivial algorithm
then has complexity ý

T (n) ∼ n
3
2

(even neglecting
the time for finding λ∗,
and the Buffon complexity
for the geometric laws)

Find a decent approx. of λ∗,
(e.g. by Newton, or by bisection);
repeat

n′ = 0 ;
for y = 0 to m do

cy = Geomeλ∗hy ;

n′ = n′ + cy ;

end

until n′ = n;

Andrea Sportiello The SPQR Method for exact sampling



The role of complex analysis

The Boltzmann method has a much broader range of applications
than the simple case of directe walks. In its generality, the
determination of λ∗ is based on the formulation of Z (λ)

as a Cauchy integral, amenable for a saddle-point analysis.

We could avoid this, as we just had independent geometric variables
Nonetheless, it’s instructive to see what does the “standard approach” give:

Zn,m =
∑

(c0,...,cm)∑
y cy=n−m

∏
y

h
cy
y

=

∮
dz

2πi z

∑
(c0,...,cm)

z−(n−m)+
∑

y cy
∏
y

h
cy
y

=

∮
dz

2πi z
z−(n−m)

m∏
y=0

∑
cy

(zhy )cy

=

∮
dz

2πi z
exp

[
− (n −m) ln z −

m∑
y=0

ln
(
1− zhy

)]
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The role of complex analysis

Zn,m =

∮
dz

2πi z
exp

[
− (n −m) ln z −m

〈
ln
(
1− zhy

)〉
0≤y≤m

]
=:

∮
dz

2πi z
exp

[
mSα(z)

]
Saddle point equation: d

dz Sα(z) = 0.

Remark: z∗ satisfies the same equation as the Lagrange multiplier eλ
∗

This is no accident, and is a well-known ‘duality’ between Cauchy
integrals and Lagrange multipliers, occurring in combinatorial

constructions with positive coefficients.

Note that, as a corollary, we get λ∗ ∈ R⇒ z∗ ∈ R+
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Recursive and Boltzmann methods, in summary

For problems of memoryless strings (i.e. directed random walks)
the generating functions satisfy simple linear recursion relations,

with positive coefficients, amenable to exact sampling through the
Recursive Method, provided that pn,m can be evaluated efficiently.

Complexity T (n) . nτn if evaluating pn,m costs τn.

This is the case, e.g., when Zn,m has a factorised formula, so that
pn,m is a rational function of constant size.

For problems of “almost-independent” random variables, subject to
a finite number k of global linear constraints (e.g.

∑
y cy = n−m),

the Boltzmann strategy, of passing to the grand-canonical
ensemble with suitably-tuned Lagrange multipliers λ∗, would work

with complexity T ∼ n1+ k
2 (neglecting some solvable details).

Finding λ∗ is often based on a saddle-point equation.
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Part 2
The SPQR Method

(i.e. Saddle-Point–Query
Recursive Method)
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The SPQR Method

We want to take the good of both Boltzmann and Recursive Methods,
and devise a new “SPQR Method”

The name stands for “Saddle-Point–Query Recursive Method”.
That says it all.

When Zn,m does not have a factorised formula, it may still have a
saddle-point formulation, so that pn,m is a ratio of almost identical

saddle-point integrals

pn,m =

∮
dz

2πi z
A1(z ;α) exp

[
nB(z ;α)

]
∮

dz

2πi z
A2(z ;α) exp

[
nB(z ;α)

]
As well known, if the dominant saddle point structure is simple,

pn,m =
A1(z∗;α)

A2(z∗;α)

(
1 +O(n−1)

)
, where z∗ solves

d

dz
B(z ;α) = 0.
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Roadmap to an algorithm

What do we need to turn the SPQR idea into an algorithm?

I Transform the saddle-point integral perturbative series into a
hierarchy of rigorous bounds.

I Re-use the information on (a decent approximation of)
z∗(n,m) for evaluating (a d. a. of) z∗(n − 1,m′), where
m′ = m or m − 1. E.g. by one step of Newton algorithm.

I When n is too small (say n ∼ N
1
γ ) our bounds become large.

At that point you finish with another algorithm (say, with
complexity T (n) ∼ nγ ∼ N).
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I When n is too small (say n ∼ N
1
γ ) our bounds become large.

At that point you finish with another algorithm (say, with
complexity T (n) ∼ nγ ∼ N).

pn,m = A1(z∗;α)
A2(z∗;α)

(
1 + 1

nG1(z∗) + 1
n2 G2(z∗) + · · ·

)
pn,m ≶ A1(z∗;α)

A2(z∗;α)

(
1 + 1

nG1(z∗) + 1
n2 G2(z∗) + · · ·+ 1

nk
G±k (z∗)

)
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Recursive Method with approx. branching probabilities

This was the Recursive Method
when pn,m can be calculated.
Complexity ý

T (n) = Θ(n) +
∑n

i=1 τi
. n τn

n′ = n; m′ = m;
while n′ > 0 do

if Bernpn′,m′ then
sn′ =↑ ; m′ = m′ − 1;

else
sn′ =→ ;

end
end

The SPQR Method variant enters in “if Bernpn′,m′”. . .

We have a “hierarchy of bounds” p±,kn,m , with p+,k
n,m − p−,kn,m = O(n−k)

Calculating p±,kn,m costs τ
(k)
n

“New” complexity:

nτn −→ n
∑

k n−k+1τ
(k)
n = nτ

(1)
n + τ

(2)
n + n−1τ

(3)
n + · · ·
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The Newton step

Unless things go bad,
a Newton step doubles

the number of
“good” digits

-0.6 -0.4 -0.2 0.2 0.4 0.6

0.05

0.1

0.15

0.2

f (z) = z + a2z2 + a3z3 + · · ·
N (z) = z − f (z)

f ′(z)

= z2
(
a2 + 2(a3 − a2

2)z + · · ·
)

Again, you need to transform a perturbative expansion
into a rigorous (bilateral) bound

In general, you revert to Blum, Cucker, Shub and Smale:
Complexity and Real Computation (ch. 8 and 9)

For a specific function, you might have a shortcut. . .
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Quick certifications of Newton Method

Being “near enough” to a zero the precision doubles at each step.
The theorems in [BCSS] give complicated sufficient conditions.

If your function f (z) is gentle enough, this property may hold
globally, for all problems f (z) = h and starting position z0:
let f (z∞) = h and z1 = Nh(z0) = z0 − (f (z0)− h)/f ′(z0),
for all pairs (z0, h) you may have |z∞ − z1| ≤ |z∞ − z0|2.

Say a function y(x) is fast if both y(x) and x(y) can be computed
efficiently. E.g., y(x) = ax+b

cx+d (Möbius transformation).

Normally, you are not so lucky, and f is not gentle. . .
But you have the right of playing with monotone transformations

f → g = φ1 ◦ f ◦ φ2, with both φα’s fast, so that the resulting
function g is gentle.
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The saddle point equation for Stirling 2nd kind is gentle

The saddle point equation for our
{ n
αn

}
is α = 1−e−z

z =: f (z)

f (z) : R+ → (0, 1]. It is not gentle (and has not compact support).
Choose f → g = φ1 ◦ f ◦ φ2 with φ1(z) = 3z

4−z and φ2(z) = 3z
2−2z

The new function g : [0, 1]→ [0, 1] is gentle

z∞ − z1

(z∞ − z0)2
-1 -0.5 0.5 1

-1

-0.5

0.5

1

image of
(z0, z∞) ∈ [0, 1]2
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A number of preliminary results. . .

Now we have to produce our claimed
hierarchy of saddle-point rigorous bounds

pn,m =
A1(z∗;α)

A2(z∗;α)

(
1 +

1

n
G1(z∗) +

1

n2
G2(z∗) + · · ·

)
pn,m ≶

A1(z∗;α)

A2(z∗;α)

(
1 +

1

n
G1(z∗) +

1

n2
G2(z∗) + · · ·+ 1

nk
G±k (z∗)

)
For this we need some preliminary definitions and results:

I a notation for propagation of errors in C;

I a notion of “sign decomposition” of a function;

I a result on the formal inversion of S(x(y)) = y 2;
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The ∼+ notation for propagation of errors in C

For x , a ∈ C, b ∈ R+, let x = a∼+ b mean |x − a| ≤ b.

Let (a∼+ b)
^
= (c ∼+ d) mean (x = a∼+ b)⇒ (x = c ∼+ d).

Nice properties:

(a∼+ b) + (c ∼+ d) = (a + c)∼+ (b + d) ;

c(a∼+ b) = ca∼+ |c |b ;

and, when f (z) is analytic,

f (a∼+ b)
^
= f (a)∼+ b′ b′ = maxθ |f (a + be iθ)− f (a)|

Among the corollaries of this fact, we have for b ∈ R+

exp(∼+ b)
^
= 1∼+ (eb − 1) b ∈ R+

a∼+ b

c ∼+ d
^
=

1

c2 − d2

(
(ac + bd)∼+ (ad + bc)

) a > b

c > d
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The ∼+ notation for propagation of errors in C

Other special case: P(z) = p1z + p2z2 + . . .+ pdzd on Dη

eP(z) = ep1ze∼+(|p2z2|+···+|pdzd |) ^
= ep1z

(
1∼+ |z |

2 e |p2|η2+···+|pd |ηd − 1

η2

)
|z | ≤ η .

We need a similar result for generic functions.
Let f (z) = f0 + f1z + f2z2 + · · · , analytic and with radius of conv. ρ

Call f [k](z) = f0 + f1z + f2z2 + · · ·+ fk−1zk−1.
For η < ρ, we want r(η) such that f (z) ∈ f [k](z)∼+ r(η)|z |k .

If, for j ≥ k , all coefficients fj are real positive, then

f (z) = f [k](z)∼+ |z |
k f (η)− f [k](η)

ηk
.

Analogous tricks if fj ’s are all negative, or have alternating sign.
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Sign-decomposition of a function

Let Fσe ,σo the space of analytic functions f (z) =
∑

j fjz
j

with sign(f2j) = σe and sign(f2j+1) = σo .

We just said that, for f ∈ Fσe ,σo , we can find good bounds
f (z) = f [k](z)∼+ r(η)|z |k (in the disk of radius η).

You want to do that for your functions A(z) and B(z)
in the saddle-point integral I =

∮
dz

2πiz A(z) exp(nB(z)). . .
. . . but most of functions are not this way!

Still, you can decompose
f (z) = f++(z) + f+−(z) + f−+(z) + f−−(z),

with fσe ,σo ∈ Fσe ,σo , and all “computable efficiently”.
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Sign-decomposition of a function

In our example for Stirling’s 2nd kind
{n
m

}
, for n+m+1

n = ζ
1−e−ζ ,

Bζ(x) = (1− e−ζ) ln(eζ+x − 1)− ζ ln(ζ + x)

for all ζ ∈ R+ we find

I −ζ ln(ζ + x) ∈ F−+ (obvious)

I (1− e−ζ) ln(eζ+x − 1) ∈ F+− (smart)

Call y = e−ζ . Write (1− e−ζ) ln(eζ+x − 1) = a(ζ) + b(ζ) ln ex−y
1−y

(with a(ζ), b(ζ) > 0). Then

ln
ex − y

1− y
=

x

1− y
+ y

∑
n,k

(−1)n−1

n!(1− y)n
Tn,kxnyk

where the coefficients Tn,k are the Eulerian numbers
(number of permutations of n + 1 objects with k rises)

http://oeis.org/A008292 ⇒ Tn,k ∈ N.

Andrea Sportiello The SPQR Method for exact sampling



Formal inversion of S(x(y)) = y 2

We want to “rectify” the function S(z) of the Cauchy integral∮
A(z) exp(nS(z))dz , at the (simple) saddle point z = z∗,
into an exact parabola, through a change of variables.

At this aim we want to solve the equation S(x(y)) = y 2, given that
x(y) = y + a2y 2 + a3y 3 + . . . and S(x) = x2 + b3x3 + b4x4 + . . .

(x(y) and S(x) are formal power series)

The problem exists in two versions: ¬ find a, given b; ­ find b, given a.
We need to solve, for all k ≥ 3, Ck(a, b) := [yk ]S(x(y)) = 0

Remark: Ck(a, b) = 2ak−1 + bk + C ′k({ah}h≤k−2, {bh}h≤k−1),
Thus the system of equations is triangular and linear,

for both versions of the problem.
The solution is unique, and is find quite efficiently.
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Formal inversion of S(x(y)) = y 2

The first few terms for b(a) read

b3 = −2 a2

b4 = 5 a2
2 − 2 a3

b5 = −14 a3
2 + 12 a2a3 − 2 a4

b6 = 42 a4
2 − 56 a2

2a3 + 7 a2
3 + 14 a2a4 − 2 a5

b7 = −132 a5
2 + 240 a3

2a3 − 72 a2a2
3 − 72 a2

2a4

+ 16 a3a4 + 16 a2a5 − 2 a6

b8 = 429 a6
2 − 990 a4

2a3 + 495 a2
2a2

3 − 30 a3
3 + 330 a3

2a4

− 180 a2a3a4 + 9 a2
4 − 90 a2

2a5 + 18 a3a5 + 18 a2a6 − 2 a7

...
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Formal inversion of S(x(y)) = y 2

For a(b), we better visualise even and odd coefficients separately

2a2 = −b3 ; 2a4 = −2 b3
3 + 3 b3b4 − b5 ;

2a6 = −7 b5
3 + 20 b3

3b4 − 10 b3b2
4 − 10 b2

3b5 + 4 b4b5 + 4 b3b6 − b7 ;

and

23a3 = 5 b2
3 − 4 b4

27a5 = 231 b4
3 − 504 b2

3b4 + 112 b2
4 + 224 b3b5 − 64 b6 ;

211a7 = 14586 b6
3 − 51480 b4

3b4 + 41184 b2
3b2

4 − 4224 b3
4 + 27456 b3

3b5

− 25344 b3b4b5 + 2304 b2
5 − 12672 b2

3b6 + 4608 b4b6

+ 4608 b3b7 − 1024 b8 .

In our algorithm we only need the solution a(b) up to a given
order. Thus this is a fixed O(1) preprocessing.
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The hierarchy of saddle-point bounds

How do we produce our bounds,
in the case of Stirling numbers of second kind?

I Recall the decomposition B(x ; ζ) = B−+(x ; ζ) + B+−(x ; ζ);

I For each summand, near to x = x∗ and within a radius η,

write Bστ (x ; ζ) = B
[k]
στ (x ; ζ)∼+ r(η)|x − x∗|k ;

I Use the solution to S(x(y)) = y 2 to bring higher orders out of
the exponential;

I Perform the corresponding integrals, which are moments of
the Gaussian (deal with the tail terms |x − x∗| > η as usual);

I The moments associated to ∼+ |x − x∗|k factors cause the gap

between lower and upper bound. They get a factor m−
k−2

2 ;

I Use the formula for
a∼+b

c∼+d
to finally get pn,m =

∮
A1···∮
A2···

.
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Part 3
The Zeno–Boltzmann Method
(a.k.a. Achilles and the tortoise)
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Boltzmann Method: a metaphore from the continuum

Brownian Motion BM(tL, xL; tR ; v) | Brownian Bridge BB(tL, xL; tR , xR)

(tL, xL) tR

v
(tL, xL)

(tR , xR)

Let’s play the following exercice de style:
Suppose you have a perfect sampler for BM(tL, xL; tR ; v).

How can you produce a sampler for BB(0, 0; t, x)?

Claim: the original idea of Boltzmann samplers is to sample
BM(0, 0; t; x/t), and reject if you don’t arrive at the good point.

Acceptance rate in the discrete: ∼ n−
1
2 .

Goes to zero in the continuum limit!

(E (x , s) := 1√
2πs

exp
(
− x2

2s

)
; in BB, v := xR−xL

tR−tL ; s ji := sj − si ; )

PBM({ti , xi}ki=1)dx = dx
k∏

i=1

E (x i
i−1 − vt ii−1, t

i
i−1)

PBB({ti , xi}ki=1)dx = dxE (xR
L − vtRL , t

R
L )−1

k+1∏
i=1

E (x i
i−1 − vt ii−1, t

i
i−1)

= PBM({ti , xi}ki=1) dx
E (xR

k − vtRk , t
R
k )

E (xR
L − vtRL , t

R
L )
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Brownian Motion BM(tL, xL; tR ; v) | Brownian Bridge BB(tL, xL; tR , xR)

(tL, xL) tR

v
(tL, xL)

(tR , xR)

Let’s play the following exercice de style:
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√

1− α. Finite, both in the discrete and
continuum, and in fact arbitrarily near to optimal (α→ 0).
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2πs

exp
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− x2

2s

)
; in BB, v := xR−xL
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(tL, xL) tR
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(tL, xL)

(tR , xR)

Acc.Rateα(x) =
PBB(αt, x)

PBM(αt, x)
= C e

− (x−E(x))2

2(1−α)t

Can choose C = 1 (instead of Boltzmann’s C ∼ 1/
√

n)

E(Acc.Rateα) =

∫
dx

PBB(αt, x)

PBM(αt, x)
e
− (x−E(x))2

2(1−α)t

=

∫
dx

1√
2παt

e−
(x−E(x))2

2αt e
− (x−E(x))2

2(1−α)t =
√

1− α
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Directed walks under the new paradigm

Let us come back to our problem on the lattice:
ω : (0, 0)→ (n −m,m), in the case hx ,y = hy and vx ,y = 1.

We already determined
ω = (→ · · · →︸ ︷︷ ︸

c0

↑ → · · · →︸ ︷︷ ︸
c1

↑ . . . ↑ → · · · →︸ ︷︷ ︸
cm

)

µBM
λ (c0, c1, . . . , cm) =

( m∏
y=0

h
cy
y

)
eλ

∑
y cy

µBB
n (c0, c1, . . . , cm) =

( m∏
y=0

h
cy
y

)
χ
[
n = m +

∑
y

cy
]

n

m
=

〈
1

1− eλhy

〉
0≤y≤m
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Directed walks under the new paradigm

How would you make an algorithm?

I select Y ⊆ {0, 1, . . . ,m}, |Y | ∼ αm, through i.i.d. Bernα.

I Sample the geometric variables cy = Geomeλhy .

I Calculate their sum nsamp(Y ) =
∑

y∈Y cy .

I Calculate the acceptance rate ρY (nsamp).

I If Rand[0,1] < ρY (nsamp), accept the partial configuration and
repeat on Y c , otherwise repeat on [m].

ρY (n) is approximatively a Gaussian with ‘good’ properties, as we
know from the analogy with BM/BB process. So E(ρY ) = O(1).

But you don’t know its value analytically
(just as in the Recursive Method “bad cases”)

So you must again use a saddle-point–query!
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Directed walks under the new paradigm: complexity

Let us show that optimality can be reached, within a simplified
complexity paradigm: you have a unit cost per sampling of a

geometric random variable, and a cost s per saddle-point–query.

Optimality would be Topt = n

The complexity satisfies

T (n) = min
α∈[0,1]

( 1√
1− α

αn + T ((1− α)n) + s
)

Make the ansatz T (n) = n + B
√

n. Plug in the equation above,
take the leading term for α� 1, and derive B =

√
8s, α∗ =

√
s

2n

Thus an asymptotically optimal strategy is to sample the square
root of the number of remaining variables at each round.
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Directed walks under the new paradigm: complexity

Even in a less restrictive setting, with unit cost per geometric
random variable, and a cost s(n) ∼ s nγ per saddle-point–query

at size n (with γ < 1), we still have optimality

We now have

T (n) = min
α∈[0,1]

( 1√
1− α

αn + T ((1− α)n) + s nγ
)

Make the ansatz T (n) = n + Bnβ. Substitute above, take α� 1. . .

n + Bnβ = n + Bnβ + min
α∈[0,1]

(α2

2
n − αβBnβ + s nγ

)
. . . that gives α∗ = βBnβ−1 and leaves with s nγ = (βB)2

2 n2β−1 . . .

. . . that gives β = 1+γ
2 , B =

√
8s

1+γ and α∗ =
√

2s n
γ−1

2 .

Here an asymptotically optimal strategy is to sample a fraction

n
γ−1

2 of the remaining variables at each round.
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