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The objective method (Aldous-Steele, 2004)

» Context: given a large interacting system (graph), one is
interested in a macroscopic quantity which depends on the
microscopic contribution of each particle (vertices).

» Key assumption: no long-range interactions, i.e. the
microscopic contribution of each particle is essentially
insensitive to remote perturbations of the system.

» Expected consequences:

1. efficient approximability by local distributed algorithms;
2. existence of an infinite-volume limit.

» lIdea: formalize that via local weak convergence, and use this
framework to replace the asymptotic study of large graphs by
the direct analysis of their infinite-volume limits.



Local convergence around a fixed root



(G,0):

Local convergence around a fixed root

countable, locally finite, connected rooted graph



(G,0):

Local convergence around a fixed root

countable, locally finite, connected rooted graph
[G, o]g : ball of radius R around o in G




(G,0):

Local convergence around a fixed root

countable, locally finite, connected rooted graph
[G, o]g : ball of radius R around o in G




(G,0):

Local convergence around a fixed root

countable, locally finite, connected rooted graph
[G, o]g : ball of radius R around o in G




(G,0):

Local convergence around a fixed root

countable, locally finite, connected rooted graph
[G, o]g : ball of radius R around o in G

n—oo

(Gp,0n) — (G, 0) if for each fixed R, there is ng € N such that

n>ngp — [Gn, On]R = [Ga O]R
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G, = {locally finite connected rooted graphs}.
G = (V,E) : finite unrooted, possibly disconnected graph.
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uniformly at random, and restricting to its connected component:

1
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Local weak convergence (Benjamini-Schramm, 2001)

G, = {locally finite connected rooted graphs}.
G = (V,E) : finite unrooted, possibly disconnected graph.

Consider the law on G, obtained by choosing a root o € V
uniformly at random, and restricting to its connected component:

1
£G = m Z 6[@,0]'

oeV

L¢ is an element of P(G,) := {probability measures on G, }.

{Gp}n>1 : sequence of finite graphs. If {L¢,},>1 admits a weak
limit £ € P(G.), then call L the local weak limit of {G,},>1.

» L describes the local geometry of G, around a random node
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Examples of local weak limits

Note: graphs must be sparse, i.e. |E| = |V/|

>

G, = box of size n X ... x nin Z9
= dirac at (Z9,0)

= random d—regular graph on n nodes
= dirac at the d—regular infinite rooted tree

S

]

= Erdés-Rényi graph with p, = = on n nodes
= law of a Galton-Watson tree with degree Poisson(c)

= random graph with degree distribution m on n nodes
= law of a Galton-Watson tree with degree distribution m

= uniform random tree on n nodes
= Infinite Skeleton Tree (Grimmett, 1980)

» = preferential attachment graph on n nodes
= Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)

]

DO B o o B
|



An illustration: the nullity of large graphs



An illustration: the nullity of large graphs
ne({0}) =

dim ker( A(;)

Vi



An illustration: the nullity of large graphs
ne({0}) =

dim ker(Ag)

Vi

Asymptotics when G is large ?



An illustration: the nullity of large raphs
UG({O}) dim ker(Ag)

Vi

Asymptotics when G is large ?
Conjecture (Bauer-Golinelli 2001). For G, : Erd8s-Rényi (n, <)

pe,({0})) —— M 4e N fene N —1
n—-o00
where \* € [0, 1] is the smallest root of A = e~ ¢

—cA



An illustration: the nullity of large graphs
UG({O}) _ dimker(Ag)

Vi

Asymptotics when G is large ?
Conjecture (Bauer-Golinelli 2001). For G, : Erd8s-Rényi (n, <)

pe,({0})) —— M 4e N fene N —1
n—-o00
where \* € [0, 1] is the smallest root of A = e~ ¢

—cA
Theorem (Bordenave-Lelarge-S., 2011)




An illustration: the nullity of large graphs

ue({0}) = TR

Asymptotics when G is large ?
Conjecture (Bauer-Golinelli 2001). For G, : Erd8s-Rényi (n, <)

pe,({0})) —— M 4e N fene N —1
n—-o00
where \* € [0, 1] is the smallest root of A = e~ ¢

—cA
Theorem (Bordenave-Lelarge-S., 2011)

1. Gp— L = pg,({0}) = pc({0}).




An illustration: the nullity of large graphs

ue({0}) = TR

Asymptotics when G is large ?
Conjecture (Bauer-Golinelli 2001). For G,

Erdés-Rényi (n, <)
16, ({0}) —— A e e ~1,
where A* € [0, 1] is the smallest root of A = e~ "
Theorem (Bordenave-Lelarge-S., 2011)

1. Gn—= L = pg,({0}) = nc({0})
2. When £ = GALTON-WATSON()
pe({0}) = min A

JAN (1= +Ff(1—A
where f(z) =

_ 1}
S mz™ and A* = £/(1 — \)/f(1).

[m]
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Continuity with respect to local weak convergence

» In the sparse regime, many important graph parameters ¢ are
essentially determined by the local geometry only.

» This can be rigorously formalized by a continuity theorem:

Gh 5L = (G, — d(L)
n—o00 n—o00

» Algorithmic implication: ¢ is efficiently approximable via
local distributed algorithms, independently of network size.

» Analytic implication: ® admits a limit along most sparse
graph sequences. The distributional self-similarity of £ may
even allow for an explicit determination of ®(L).

» Examples: number of spanning trees (Lyons, 2005), spectrum
and rank (Bordenave-Lelarge-S, 2011), matching polynomial
(idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)...
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Load balancing

An allocation on G is a function 0: E — [0, 1] satisfying

0(i,j)+6(,i) =1

The induced load at / € V is

00(i) =>_0(j,)
The allocation is balanced if for each (i,)) € E

90(i) < 90(j) = 6(i,j) =0
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From local to global optimality

Claim. For an allocation @, the following are equivalent:
1. 0 is balanced
2. 0 minimizes ) (80(i))>.
3. 0 minimizes ). f(00(i)) for any convex function f: R — R.

Corollary 1. Balanced allocations always exist.
Corollary 2. They all induce the same loads 00: V — [0, c0).

Corollary 3. Balanced loads solve the densest subgraph problem:

maxd6(i) = o* and argmaxdf(i) = H*
iev eV
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The conjecture (Hajek, 1990)

009(G,0) : load induced at o by any balanced allocation on G.
Define the density profile of G = (V, E) as

oeV

1
A = Vi Y doe(c0) € P(R).
Conjecture: G, Erdés-Rényi (n, €); ¢ fixed, n — oo

1. Ag, concentrates around a deterministic A € P(R)
2. 0*(Gn) —— sup{t € R: A(t, +00) > 0}
n—o0
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Result 1 :

the density profile of sparse graphs

Theorem. Assume that £ [deg(G, 0)] < co. Then

— /\G ﬂ)/\ﬁ

where A, is the solution to a certain optimization problem on £

Specifically, the excess function ®: t — [, (x — t)TAz(dx) solves

d(t) = . gr?ax { [Zf

i) A f(G,o)

- tC[f(G,o)]}
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Extend the definition of ¢* to local weak limits by

0" (L) :=supess Az = sup{t: ®(t) >0}

In light of previous result, one expects a continuity principle :

G, 5, 1 — 0*(Gn) — 0*(L)
n—o0 n—oo

Counter-example: adding a large but fixed clique to G, will
arbitrarily boost 0*(G,) without affecting convergence G, — L.

Theorem. G, uniform with degree distribution {7 }xen.
Assume degrees have light tail, i.e. lim supw,l(/k < 1. Then,

k—o00

0*(Gp) — 0*(L£), where £ = GALTON-WATSON(7).
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Theorem. In the case where £ = GALTON-WATSON(7),
E[D]
(&) o!ﬁﬁém{ 2 (& +&>1) (&+4+---+&p )}

where D ~ 7 and {&, }>1 are 1ID with law @, independent of D.

The maximum is over all choices of Q@ € P([0, 1]) such that

ELl—t+&+-- +&p)

0
where [¢]} denotes projection onto [0, 1] : [x]} =

it x<0
x if x € [0,1]

1 ifx>1
Distributional fixed-point equation : can be solved numerically.
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An explicit formula
G, : Erdés-Rényi (n./ %) k € N* fixed
Question: does G, contain a k—dense subgraph?
Define fi(x) = e* — (1+x+~-~+ i—k,)
Set ¢, = #() where x unique solution to ?‘( () ) _ k.

Theorem. With probability tending to one as n — oo,
» If ¢ < ¢, then G, does not contain a k—dense subgraph

» If ¢ > c, then G, contains a k—dense subgraph

Ci | 359|576 |7.84|9.90|11.93|13.95|15.97 | 17.98 | 19.98
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Microscopic contribution: 09(G, o)

Hope: 0O(G, o) is insensitive to what lies far away from o:
[G,olr =[G, 0lr = |00(G,0) —9O(G',d)| < f(R),

where f(R) — 0 as R — oo.

Counter-example: let G be a d—regular graph with girth > R
e 99(G,0) =4
e [G,o]g is a tree

e 0O < p* < 1 on any tree

» Balanced loads exhibit long-range dependences !
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Solution :

relaxed load balancing

€ > 0 : perturbative parameter

Definition. An allocation 6 on G = (V/, E) is c—balanced if

1 a00) —a0() 1
9(’7./) - 5 + 2 0
In particular, 90(i) < 00(j) —e = 0(i,j) = 0.

Claim 1. There exists a unique e—balanced allocation ©..
Claim 2. If [G,0|g = [G', 0]k, then

100-(G, 0) — 90.(G',0')| < A (1 N

-R
€
a)
Corollary. ©. extends continuously to infinite graphs !
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Conclusion

» In the sparse regime, many important graph parameters ¢ are
essentially determined by the local geometry of the graph.

» This can be rigorously formalized by a continuity theorem:

G, L = ®(G,) —— (L)
n—o0 n—o0

» Algorithmic implication: @ is efficiently approximable via
local distributed algorithms, independently of network size.

» Analytic implication: ® admits a limit along most sparse
graph sequences. The distributional self-similarity of £ may
sometimes even allow for an explicit determination of ®(L).

» Many examples: spanning trees, spectrum and rank,
matching polynomial, Ising models, dense subgraphs...



Thank you !




