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The objective method (Aldous-Steele, 2004)

I Context: given a large interacting system (graph), one is
interested in a macroscopic quantity which depends on the
microscopic contribution of each particle (vertices).

I Key assumption: no long-range interactions, i.e. the
microscopic contribution of each particle is essentially
insensitive to remote perturbations of the system.

I Expected consequences:

1. efficient approximability by local distributed algorithms;
2. existence of an infinite-volume limit.

I Idea: formalize that via local weak convergence, and use this
framework to replace the asymptotic study of large graphs by
the direct analysis of their infinite-volume limits.
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Local convergence around a fixed root

(G , o) : countable, locally finite, connected rooted graph

[G , o]R : ball of radius R around o in G

R

(Gn, on) −−−→
n→∞

(G , o) if for each fixed R, there is nR ∈ N such that

n ≥ nR =⇒ [Gn, on]R ≡ [G , o]R
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Local weak convergence (Benjamini-Schramm, 2001)

G? = {locally finite connected rooted graphs}.

G = (V ,E ) : finite unrooted, possibly disconnected graph.

Consider the law on G? obtained by choosing a root o ∈ V
uniformly at random, and restricting to its connected component:

LG :=
1

|V |
∑
o∈V

δ[G ,o].

LG is an element of P(G?) := {probability measures on G?}.

{Gn}n≥1 : sequence of finite graphs. If {LGn}n≥1 admits a weak
limit L ∈ P(G?), then call L the local weak limit of {Gn}n≥1.

I L describes the local geometry of Gn around a random node
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Examples of local weak limits

Note: graphs must be sparse, i.e. |E | � |V |
I Gn = box of size n × . . .× n in Zd

L = dirac at (Zd , 0)

I Gn = random d−regular graph on n nodes
L = dirac at the d−regular infinite rooted tree

I Gn = Erdős-Rényi graph with pn = c
n on n nodes

L = law of a Galton-Watson tree with degree Poisson(c)

I Gn = random graph with degree distribution π on n nodes
L = law of a Galton-Watson tree with degree distribution π

I Gn = uniform random tree on n nodes
L = Infinite Skeleton Tree (Grimmett, 1980)

I Gn = preferential attachment graph on n nodes
L = Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)
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I Gn = Erdős-Rényi graph with pn = c
n on n nodes

L = law of a Galton-Watson tree with degree Poisson(c)

I Gn = random graph with degree distribution π on n nodes
L = law of a Galton-Watson tree with degree distribution π

I Gn = uniform random tree on n nodes
L = Infinite Skeleton Tree (Grimmett, 1980)

I Gn = preferential attachment graph on n nodes
L = Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)



Examples of local weak limits

Note: graphs must be sparse, i.e. |E | � |V |
I Gn = box of size n × . . .× n in Zd

L = dirac at (Zd , 0)

I Gn = random d−regular graph on n nodes
L = dirac at the d−regular infinite rooted tree
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An illustration: the nullity of large graphs

µG ({0}) = dimker(AG)
|V | . Asymptotics when G is large ?

Conjecture (Bauer-Golinelli 2001). For Gn : Erdős-Rényi
(
n, cn

)
,

µGn({0}) −−−→
n→∞

λ∗ + e−cλ
∗

+ cλ∗e−cλ
∗ − 1,

where λ∗ ∈ [0, 1] is the smallest root of λ = e−ce
−cλ

.

Theorem (Bordenave-Lelarge-S., 2011)

1. Gn → L =⇒ µGn({0})→ µL({0}).

2. When L = Galton-Watson(π),

µL({0}) = min
λ=λ∗∗

{
f ′(1)λλ∗ + f (1− λ) + f (1− λ∗)− 1

}
,

where f (z) =
∑

n πnz
n and λ∗ = f ′(1− λ)/f ′(1).
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Continuity with respect to local weak convergence

I In the sparse regime, many important graph parameters Φ are
essentially determined by the local geometry only.

I This can be rigorously formalized by a continuity theorem:

Gn
loc.−−−→

n→∞
L =⇒ Φ(Gn) −−−→

n→∞
Φ(L)

I Algorithmic implication: Φ is efficiently approximable via
local distributed algorithms, independently of network size.

I Analytic implication: Φ admits a limit along most sparse
graph sequences. The distributional self-similarity of L may
even allow for an explicit determination of Φ(L).

I Examples: number of spanning trees (Lyons, 2005), spectrum
and rank (Bordenave-Lelarge-S, 2011), matching polynomial
(idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)...
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The densest subgraph problem

Fix a finite graph G = (V ,E )

Densest subgraph : H? = argmax
{
|E(H)|
|H| : H ⊆ V

}
Maximum subgraph density : %? = max

{
|E(H)|
|H| : H ⊆ V

}

= 17
10
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Load balancing

An allocation on G is a function θ : ~E → [0, 1] satisfying

θ(i , j) + θ(j , i) = 1

The induced load at i ∈ V is

∂θ(i) =
∑
j∼i

θ(j , i)

The allocation is balanced if for each (i , j) ∈ ~E

∂θ(i) < ∂θ(j) =⇒ θ(i , j) = 0
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From local to global optimality

Claim. For an allocation θ, the following are equivalent:

1. θ is balanced

2. θ minimizes
∑

i (∂θ(i))2.

3. θ minimizes
∑

i f (∂θ(i)) for any convex function f : R→ R.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads ∂θ : V → [0,∞).

Corollary 3. Balanced loads solve the densest subgraph problem:

max
i∈V

∂θ(i) = %? and argmax
i∈V

∂θ(i) = H?
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How do those ‘densities” look on a large sparse graph ?
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Density profile of a random graph with average degree 3

|V | = 100 |V | = 10000



Density profile of a random graph with average degree 3

|V | = 100

|V | = 10000



Density profile of a random graph with average degree 3

|V | = 100 |V | = 10000



Density profile of a random graph with average degree 4
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The conjecture (Hajek, 1990)

∂Θ(G , o) : load induced at o by any balanced allocation on G .

Define the density profile of G = (V ,E ) as

ΛG =
1

|V |
∑
o∈V

δ∂Θ(G ,o) ∈ P(R).

Conjecture: Gn Erdős-Rényi
(
n, cn

)
; c fixed, n→∞

1. ΛGn concentrates around a deterministic Λ ∈ P(R)

2. %?(Gn)
P−−−→

n→∞
sup{t ∈ R : Λ(t,+∞) > 0}
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Result 1 : the density profile of sparse graphs

Theorem. Assume that L [deg(G , o)] <∞. Then,

Gn
loc.−−−→

n→∞
L =⇒ ΛGn

P(R)−−−→
n→∞

ΛL

where ΛL is the solution to a certain optimization problem on L.

Specifically, the excess function Φ: t 7→
∫
R(x − t)+ΛL(dx) solves

Φ(t) = max
f : G?→[0,1]

{
1

2
L

[∑
i∼o

f (G , i) ∧ f (G , o)

]
− tL[f (G , o)]

}
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Specifically, the excess function Φ: t 7→
∫
R(x − t)+ΛL(dx) solves

Φ(t) = max
f : G?→[0,1]

{
1

2
L

[∑
i∼o

f (G , i) ∧ f (G , o)
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− tL[f (G , o)]
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Result 2 : maximum subgraph density of sparse graphs

Extend the definition of %? to local weak limits by

%?(L) := sup ess ΛL = sup{t : Φ(t) > 0}

In light of previous result, one expects a continuity principle :

Gn
loc.−−−→

n→∞
L =⇒ %?(Gn) −−−→

n→∞
%?(L)

Counter-example: adding a large but fixed clique to Gn will
arbitrarily boost %?(Gn) without affecting convergence Gn → L.

Theorem. Gn uniform with degree distribution {πk}k∈N.

Assume degrees have light tail, i.e. lim sup
k→∞

π
1/k
k < 1. Then,

%?(Gn) −−−→
n→∞

%?(L), where L = Galton-Watson(π).
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Result 3 : the case of Galton-Watson trees

Theorem. In the case where L = Galton-Watson(π),

Φ(t) = max
Q∈P([0,1])

{
E[D]

2
P (ξ1 + ξ2 > 1)− tP (ξ1 + · · ·+ ξD > t)

}
where D ∼ π and {ξk}k≥1 are iid with law Q, independent of D.

The maximum is over all choices of Q ∈ P([0, 1]) such that

ξ
d
= [1− t + ξ1 + · · ·+ ξD ]10

where [•]10 denotes projection onto [0, 1] : [x ]10 =


0 if x < 0

x if x ∈ [0, 1]

1 if x > 1

Distributional fixed-point equation : can be solved numerically.
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An explicit formula

Gn : Erdős-Rényi
(
n, cn

)

k ∈ N∗ fixed

Question: does Gn contain a k−dense subgraph?

Define fk(x) = ex −
(

1 + x + · · ·+ xk

k!

)
Set c∗ = xex

fk−1(x) , where x unique solution to
xfk−1(x)
fk (x) = 2k .

Theorem. With probability tending to one as n→∞,

I If c < c∗ then Gn does not contain a k−dense subgraph

I If c > c∗ then Gn contains a k−dense subgraph

k 2 3 4 5 6 7 8 9 10

c∗ 3.59 5.76 7.84 9.90 11.93 13.95 15.97 17.98 19.98
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A few words on the proof

Microscopic contribution: ∂Θ(G , o)

Hope: ∂Θ(G , o) is insensitive to what lies far away from o:

[G , o]R ≡ [G ′, o ′]R =⇒
∣∣∂Θ(G , o)− ∂Θ(G ′, o ′)

∣∣ ≤ f (R),

where f (R)→ 0 as R →∞.

Counter-example: let G be a d−regular graph with girth > R

• ∂Θ(G , o) = d
2

• [G , o]R is a tree

• ∂Θ ≤ %? < 1 on any tree

I Balanced loads exhibit long-range dependences !
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Solution : relaxed load balancing

ε > 0 : perturbative parameter

Definition. An allocation θ on G = (V ,E ) is ε−balanced if

θ(i , j) =

[
1

2
+
∂θ(i)− ∂θ(j)

2ε

]1

0

In particular, ∂θ(i) ≤ ∂θ(j)− ε =⇒ θ(i , j) = 0.

Claim 1. There exists a unique ε−balanced allocation Θε.

Claim 2. If [G , o]R ≡ [G ′, o ′]R , then

∣∣∂Θε(G , o)− ∂Θε(G
′, o ′)

∣∣ ≤ ∆

(
1 +

2ε

∆

)−R
.

Corollary. Θε extends continuously to infinite graphs !
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Proof outline

Assume Gn
loc.−−−→

n→∞
L with

∫
G? deg dL <∞.

Consider a test function ψ : R→ R (bounded, Lipschitz)

1

|Vn|
∑
o∈Vn

ψ (∂Θ(Gn, o)) −−−→
n→∞

∫
G?

(ψ ◦ ∂Θ)dLx ε→ 0

1

|Vn|
∑
o∈Vn

ψ (∂Θε(Gn, o)) −−−→
n→∞

∫
G?

(ψ ◦ ∂Θε) dL
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Conclusion

I In the sparse regime, many important graph parameters Φ are
essentially determined by the local geometry of the graph.

I This can be rigorously formalized by a continuity theorem:

Gn
loc.−−−→

n→∞
L =⇒ Φ(Gn) −−−→

n→∞
Φ(L)

I Algorithmic implication: Φ is efficiently approximable via
local distributed algorithms, independently of network size.

I Analytic implication: Φ admits a limit along most sparse
graph sequences. The distributional self-similarity of L may
sometimes even allow for an explicit determination of Φ(L).

I Many examples: spanning trees, spectrum and rank,
matching polynomial, Ising models, dense subgraphs...
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Thank you !


