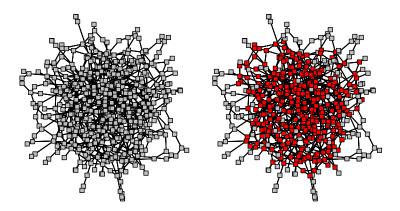
The densest subgraph of sparse random graphs



Justin Salez (Université Paris 7) with Venkat Anantharam (UC Berkeley)

Sac

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Context: given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

 Context: given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

► Key assumption: no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

 Context: given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).

- Key assumption: no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.
- Expected consequences:

- Context: given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).
- ► Key assumption: no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

Expected consequences:

1. efficient approximability by local distributed algorithms;

- Context: given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).
- Key assumption: no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

Expected consequences:

1. efficient approximability by local distributed algorithms;

2. existence of an infinite-volume limit.

- Context: given a large interacting system (graph), one is interested in a macroscopic quantity which depends on the microscopic contribution of each particle (vertices).
- ► Key assumption: no long-range interactions, i.e. the microscopic contribution of each particle is essentially insensitive to remote perturbations of the system.

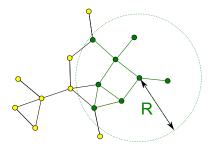
Expected consequences:

- 1. efficient approximability by local distributed algorithms;
- 2. existence of an infinite-volume limit.
- ► Idea: formalize that via *local weak convergence*, and use this framework to replace the asymptotic study of large graphs by the direct analysis of their infinite-volume limits.

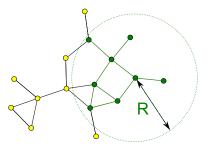
(G, o): countable, locally finite, connected rooted graph

(G, o): countable, locally finite, connected rooted graph $[G, o]_R$: ball of radius *R* around *o* in *G*

(G, o): countable, locally finite, connected rooted graph $[G, o]_R$: ball of radius R around o in G



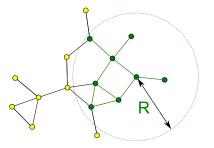
(G, o): countable, locally finite, connected rooted graph $[G, o]_R$: ball of radius R around o in G



・ロト ・ 戸 ト ・ 日 ト ・ 日 ト

$$(G_n, o_n) \xrightarrow[n \to \infty]{} (G, o)$$

(G, o): countable, locally finite, connected rooted graph $[G, o]_R$: ball of radius R around o in G



 $(G_n, o_n) \xrightarrow[n \to \infty]{} (G, o)$ if for each **fixed** *R*, there is $n_R \in \mathbb{N}$ such that

 $n \ge n_R \implies [G_n, o_n]_R \equiv [G, o]_R$

 $\mathcal{G}_{\star} = \{ \text{locally finite connected rooted graphs} \}.$

- $\mathcal{G}_{\star} = \{ \text{locally finite connected rooted graphs} \}.$
- G = (V, E): finite unrooted, possibly disconnected graph.

・ロト・日本・モート モー うへの

 $\mathcal{G}_{\star} = \{ \text{locally finite connected rooted graphs} \}.$

G = (V, E): finite unrooted, possibly disconnected graph.

Consider the law on \mathcal{G}_{\star} obtained by choosing a root $o \in V$ uniformly at random, and restricting to its connected component:

 $\mathcal{G}_{\star} = \{ \text{locally finite connected rooted graphs} \}.$

G = (V, E): finite unrooted, possibly disconnected graph.

Consider the law on \mathcal{G}_{\star} obtained by choosing a root $o \in V$ uniformly at random, and restricting to its connected component:

$$\mathcal{L}_{G} := \frac{1}{|V|} \sum_{o \in V} \delta_{[G,o]}.$$

 $\mathcal{G}_{\star} = \{ \text{locally finite connected rooted graphs} \}.$

G = (V, E): finite unrooted, possibly disconnected graph.

Consider the law on \mathcal{G}_{\star} obtained by choosing a root $o \in V$ uniformly at random, and restricting to its connected component:

$$\mathcal{L}_G := \frac{1}{|V|} \sum_{o \in V} \delta_{[G,o]}.$$

 $\mathcal{L}_{\mathcal{G}}$ is an element of $\mathcal{P}(\mathcal{G}_{\star}) := \{ \text{probability measures on } \mathcal{G}_{\star} \}.$

 $\mathcal{G}_{\star} = \{ \text{locally finite connected rooted graphs} \}.$

G = (V, E): finite unrooted, possibly disconnected graph.

Consider the law on \mathcal{G}_{\star} obtained by choosing a root $o \in V$ uniformly at random, and restricting to its connected component:

$$\mathcal{L}_G := \frac{1}{|V|} \sum_{o \in V} \delta_{[G,o]}.$$

 \mathcal{L}_G is an element of $\mathcal{P}(\mathcal{G}_{\star}) := \{ \text{probability measures on } \mathcal{G}_{\star} \}.$ $\{ \mathcal{G}_n \}_{n \geq 1} : \text{ sequence of finite graphs.}$

 $\mathcal{G}_{\star} = \{ \text{locally finite connected rooted graphs} \}.$

G = (V, E): finite unrooted, possibly disconnected graph.

Consider the law on \mathcal{G}_{\star} obtained by choosing a root $o \in V$ uniformly at random, and restricting to its connected component:

$$\mathcal{L}_G := \frac{1}{|V|} \sum_{o \in V} \delta_{[G,o]}.$$

 \mathcal{L}_{G} is an element of $\mathcal{P}(\mathcal{G}_{\star}) := \{ \text{probability measures on } \mathcal{G}_{\star} \}.$

 $\{G_n\}_{n\geq 1}$: sequence of finite graphs. If $\{\mathcal{L}_{G_n}\}_{n\geq 1}$ admits a weak limit $\mathcal{L} \in \mathcal{P}(\mathcal{G}_{\star})$, then call \mathcal{L} the **local weak limit** of $\{G_n\}_{n\geq 1}$.

 $\mathcal{G}_{\star} = \{ \text{locally finite connected rooted graphs} \}.$

G = (V, E): finite unrooted, possibly disconnected graph.

Consider the law on \mathcal{G}_{\star} obtained by choosing a root $o \in V$ uniformly at random, and restricting to its connected component:

$$\mathcal{L}_G := \frac{1}{|V|} \sum_{o \in V} \delta_{[G,o]}.$$

 $\mathcal{L}_{\mathcal{G}}$ is an element of $\mathcal{P}(\mathcal{G}_{\star}) := \{ \text{probability measures on } \mathcal{G}_{\star} \}.$

 $\{G_n\}_{n\geq 1}$: sequence of finite graphs. If $\{\mathcal{L}_{G_n}\}_{n\geq 1}$ admits a weak limit $\mathcal{L} \in \mathcal{P}(\mathcal{G}_{\star})$, then call \mathcal{L} the **local weak limit** of $\{G_n\}_{n\geq 1}$.

▶ \mathcal{L} describes the local geometry of G_n around a random node

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

• $G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

• G_n = random d-regular graph on n nodes

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

► G_n = random d-regular graph on n nodes
L = dirac at the d-regular infinite rooted tree

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

G_n = random d−regular graph on n nodes
 L = dirac at the d−regular infinite rooted tree

•
$$G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$$

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- G_n = random d−regular graph on n nodes
 L = dirac at the d−regular infinite rooted tree
- G_n = Erdős-Rényi graph with p_n = ^c/_n on n nodes
 L = law of a Galton-Watson tree with degree Poisson(c)

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- G_n = random d−regular graph on n nodes
 L = dirac at the d−regular infinite rooted tree
- G_n = Erdős-Rényi graph with p_n = c/n on n nodes
 L = law of a Galton-Watson tree with degree Poisson(c)
- G_n = random graph with degree distribution π on n nodes

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- ► G_n = random d-regular graph on n nodes
 L = dirac at the d-regular infinite rooted tree
- G_n = Erdős-Rényi graph with p_n = c/n on n nodes
 L = law of a Galton-Watson tree with degree Poisson(c)
- G_n = random graph with degree distribution π on n nodes
 L = law of a Galton-Watson tree with degree distribution π

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- ► G_n = random d-regular graph on n nodes
 L = dirac at the d-regular infinite rooted tree
- $G_n = \text{Erd}$ ős-Rényi graph with $p_n = \frac{c}{n}$ on *n* nodes $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson(c)}$
- G_n = random graph with degree distribution π on n nodes \mathcal{L} = law of a Galton-Watson tree with degree distribution π

• G_n = uniform random tree on n nodes

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- G_n = random d-regular graph on n nodes
 - \mathcal{L} = dirac at the *d*-regular infinite rooted tree
- ► G_n = Erdős-Rényi graph with p_n = ^c/_n on n nodes
 L = law of a Galton-Watson tree with degree Poisson(c)
- G_n = random graph with degree distribution π on n nodes \mathcal{L} = law of a Galton-Watson tree with degree distribution π

G_n = uniform random tree on n nodes
 L = Infinite Skeleton Tree (Grimmett, 1980)

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- G_n = random *d*-regular graph on *n* nodes
 - \mathcal{L} = dirac at the *d*-regular infinite rooted tree
- ► G_n = Erdős-Rényi graph with p_n = ^c/_n on n nodes
 L = law of a Galton-Watson tree with degree Poisson(c)
- G_n = random graph with degree distribution π on n nodes \mathcal{L} = law of a Galton-Watson tree with degree distribution π
- G_n = uniform random tree on n nodes
 - \mathcal{L} = Infinite Skeleton Tree (Grimmett, 1980)
- G_n = preferential attachment graph on *n* nodes

Note: graphs must be **sparse**, i.e. $|E| \approx |V|$

•
$$G_n = \text{box of size } n \times \ldots \times n \text{ in } \mathbb{Z}^d$$

 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- G_n = random d-regular graph on n nodes
 - \mathcal{L} = dirac at the *d*-regular infinite rooted tree
- ► G_n = Erdős-Rényi graph with p_n = ^c/_n on n nodes
 L = law of a Galton-Watson tree with degree Poisson(c)
- G_n = random graph with degree distribution π on n nodes \mathcal{L} = law of a Galton-Watson tree with degree distribution π
- G_n = uniform random tree on n nodes
 - \mathcal{L} = Infinite Skeleton Tree (Grimmett, 1980)
- G_n = preferential attachment graph on n nodes
 L = Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)

 $\mu_{G}(\{0\}) = \frac{\dim \ker(A_{G})}{|V|}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An illustration: the nullity of large graphs $\mu_{G}(\{0\}) = \frac{\dim \ker(A_{G})}{|V|}.$ Asymptotics when G is large ?

 $\mu_{G}(\{0\}) = \frac{\dim \ker(A_{G})}{|V|}.$ Asymptotics when *G* is large ? **Conjecture** (Bauer-Golinelli 2001). For *G_n* : Erdős-Rényi $(n, \frac{c}{n})$,

$$\mu_{G_n}(\{0\}) \xrightarrow[n\to\infty]{} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

 $\mu_{G}(\{0\}) = \frac{\dim \ker(A_{G})}{|V|}.$ Asymptotics when *G* is large ? **Conjecture** (Bauer-Golinelli 2001). For *G_n* : Erdős-Rényi $(n, \frac{c}{n})$,

$$\mu_{G_n}(\{0\}) \xrightarrow[n \to \infty]{} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

Theorem (Bordenave-Lelarge-S., 2011)

 $\mu_{G}(\{0\}) = \frac{\dim \ker(A_{G})}{|V|}.$ Asymptotics when *G* is large ? **Conjecture** (Bauer-Golinelli 2001). For *G_n* : Erdős-Rényi $(n, \frac{c}{n})$,

$$\mu_{G_n}(\{0\}) \xrightarrow[n \to \infty]{} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

Theorem (Bordenave-Lelarge-S., 2011)

1. $G_n \to \mathcal{L} \implies \mu_{G_n}(\{0\}) \to \mu_{\mathcal{L}}(\{0\}).$

 $\mu_{G}(\{0\}) = \frac{\dim \ker(A_{G})}{|V|}.$ Asymptotics when *G* is large ? **Conjecture** (Bauer-Golinelli 2001). For *G_n* : Erdős-Rényi $(n, \frac{c}{n})$,

$$\mu_{G_n}(\{0\}) \xrightarrow[n \to \infty]{} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

Theorem (Bordenave-Lelarge-S., 2011)

- 1. $G_n \to \mathcal{L} \implies \mu_{G_n}(\{0\}) \to \mu_{\mathcal{L}}(\{0\}).$
- 2. When $\mathcal{L} = \text{GALTON-WATSON}(\pi)$,

$$\mu_{\mathcal{L}}(\{0\}) = \min_{\lambda = \lambda^{**}} \left\{ f'(1)\lambda\lambda^* + f(1-\lambda) + f(1-\lambda^*) - 1 \right\},$$

where $f(z) = \sum_n \pi_n z^n$ and $\lambda^* = f'(1-\lambda)/f'(1)$.

► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

- ► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of Φ(L).

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

- ► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of Φ(L).
- Examples:

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

- ► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of Φ(L).
- ► Examples: number of spanning trees (Lyons, 2005),

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

- ► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of *L* may even allow for an explicit determination of Φ(*L*).
- Examples: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011),

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

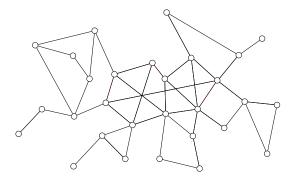
- ► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of *L* may even allow for an explicit determination of Φ(*L*).
- Examples: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013),

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** only.
- ► This can be rigorously formalized by a continuity theorem:

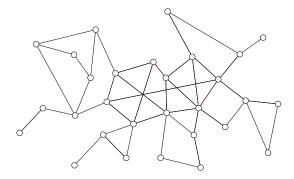
$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

- ► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may even allow for an explicit determination of Φ(L).
- ► Examples: number of spanning trees (Lyons, 2005), spectrum and rank (Bordenave-Lelarge-S, 2011), matching polynomial (idem, 2013), Ising models (Dembo-Montanari-Sun, 2013)...

Fix a finite graph G = (V, E)



Fix a finite graph G = (V, E)



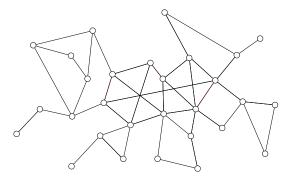
3

イロト イポト イヨト イヨト

500

Densest subgraph : $H^* = \operatorname{argmax} \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\}$

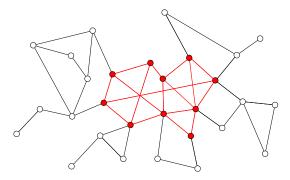
Fix a finite graph G = (V, E)



Densest subgraph : $H^* = \operatorname{argmax} \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\}$ Maximum subgraph density : $a^* = \max \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\}$

Maximum subgraph density : $\varrho^* = \max\left\{\frac{|E(H)|}{|H|}: H \subseteq V\right\}$

Fix a finite graph G = (V, E)



Densest subgraph : $H^{\star} = \operatorname{argmax} \left\{ \frac{|E(H)|}{|H|} : H \subseteq V \right\}$

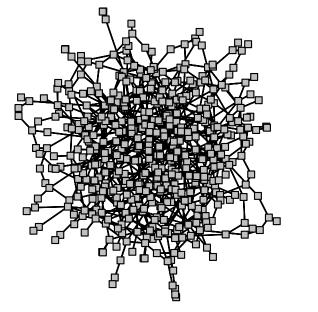
Maximum subgraph density : $\rho^{\star} = \max\left\{\frac{|\mathcal{E}(\mathcal{H})|}{|\mathcal{H}|}: \mathcal{H} \subseteq \mathcal{V}\right\} = \frac{17}{10}$

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

The densest subgraph problem on large sparse graphs

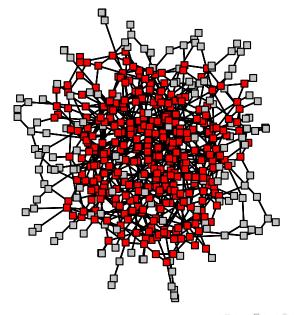
<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

The densest subgraph problem on large sparse graphs



ロト 《聞 ト 《臣 ト 《臣 ト 三臣 … のへで

The densest subgraph problem on large sparse graphs



< E ► E ∽ Q (~

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

An allocation on G is a function $\theta \colon \vec{E} \to [0, 1]$ satisfying

 $\theta(i,j) + \theta(j,i) = 1$

An allocation on G is a function $\theta \colon \vec{E} \to [0,1]$ satisfying

 $\theta(i,j) + \theta(j,i) = 1$

The **induced load** at $i \in V$ is

 $\partial \theta(i) = \sum_{j \sim i} \theta(j, i)$

An **allocation** on *G* is a function $\theta \colon \vec{E} \to [0, 1]$ satisfying

 $\theta(i,j) + \theta(j,i) = 1$

The **induced load** at $i \in V$ is

$$\partial \theta(i) = \sum_{j \sim i} \theta(j, i)$$

The allocation is **balanced** if for each $(i, j) \in \vec{E}$

 $\partial \theta(i) < \partial \theta(j) \implies \theta(i,j) = 0$

Claim. For an allocation θ , the following are equivalent:

Claim. For an allocation θ , the following are equivalent: 1. θ is balanced

Claim. For an allocation θ , the following are equivalent:

- 1. θ is balanced
- 2. θ minimizes $\sum_{i} (\partial \theta(i))^2$.

Claim. For an allocation θ , the following are equivalent:

- 1. θ is balanced
- 2. θ minimizes $\sum_{i} (\partial \theta(i))^2$.
- 3. θ minimizes $\sum_{i} f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

Claim. For an allocation θ , the following are equivalent:

- 1. θ is balanced
- 2. θ minimizes $\sum_{i} (\partial \theta(i))^2$.
- 3. θ minimizes $\sum_{i} f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

Corollary 1. Balanced allocations always exist.

Claim. For an allocation θ , the following are equivalent:

- 1. θ is balanced
- 2. θ minimizes $\sum_{i} (\partial \theta(i))^2$.
- 3. θ minimizes $\sum_{i} f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads $\partial \theta \colon V \to [0, \infty)$.

From local to global optimality

Claim. For an allocation θ , the following are equivalent:

- 1. θ is balanced
- 2. θ minimizes $\sum_{i} (\partial \theta(i))^2$.
- 3. θ minimizes $\sum_{i} f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

Corollary 1. Balanced allocations always exist.

Corollary 2. They all induce the same loads $\partial \theta \colon V \to [0, \infty)$.

Corollary 3. Balanced loads solve the densest subgraph problem:

From local to global optimality

Claim. For an allocation θ , the following are equivalent:

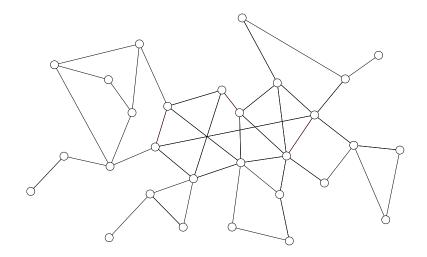
- 1. θ is balanced
- 2. θ minimizes $\sum_{i} (\partial \theta(i))^2$.
- 3. θ minimizes $\sum_{i} f(\partial \theta(i))$ for any convex function $f : \mathbb{R} \to \mathbb{R}$.

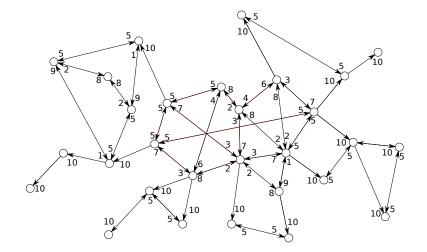
Corollary 1. Balanced allocations always exist.

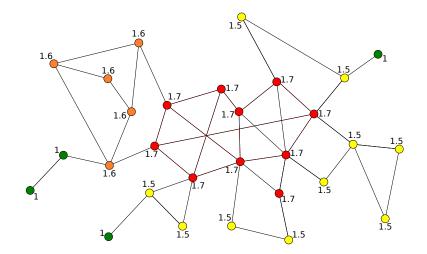
Corollary 2. They all induce the same loads $\partial \theta \colon V \to [0, \infty)$.

Corollary 3. Balanced loads solve the densest subgraph problem:

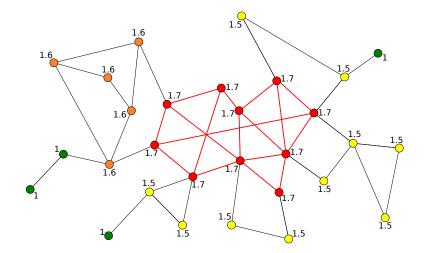
 $\max_{i \in V} \partial \theta(i) = \varrho^{\star} \quad \text{and} \quad \operatorname*{argmax}_{i \in V} \partial \theta(i) = H^{\star}$







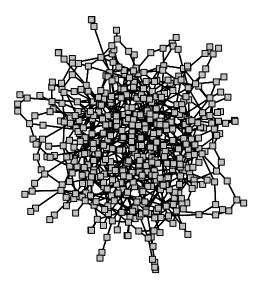
< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡



◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ・ つへぐ

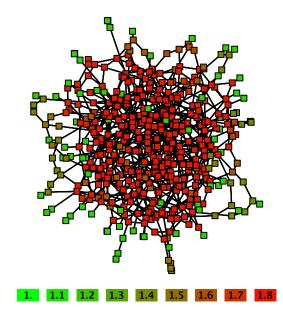
How do those 'densities" look on a large sparse graph ?

How do those 'densities" look on a large sparse graph ?

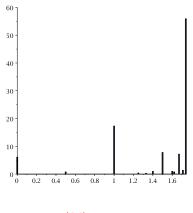


(ロ > < 昼 > < 豆 > < 豆 > 一豆 > つへで

How do those 'densities" look on a large sparse graph ?

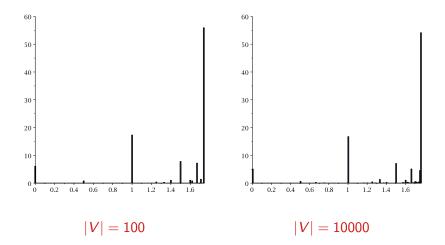


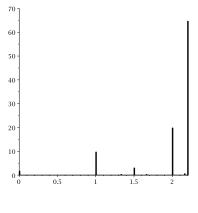
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



|V| = 100

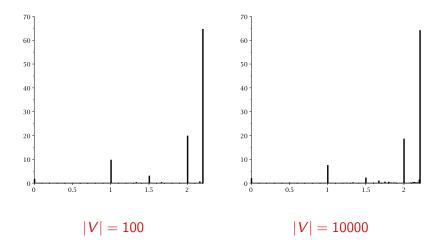
<ロ> < 団 > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < O < O





|V| = 100

<ロト < 団 > < 臣 > < 臣 > 三 の < で</p>



< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

 $\partial \Theta(G, o)$: load induced at o by any balanced allocation on G.

 $\partial \Theta(G, o)$: load induced at o by any balanced allocation on G. Define the **density profile** of G = (V, E) as

$$\Lambda_G = rac{1}{|V|} \sum_{o \in V} \delta_{\partial \Theta(G,o)} \in \mathcal{P}(\mathbb{R}).$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

 $\partial \Theta(G, o)$: load induced at o by any balanced allocation on G. Define the **density profile** of G = (V, E) as

$$\Lambda_G = rac{1}{|V|} \sum_{o \in V} \delta_{\partial \Theta(G,o)} \in \mathcal{P}(\mathbb{R}).$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Conjecture: G_n Erdős-Rényi $\left(n, \frac{c}{n}\right)$; *c* fixed, $n \to \infty$

 $\partial \Theta(G, o)$: load induced at o by any balanced allocation on G. Define the **density profile** of G = (V, E) as

$$\Lambda_G = rac{1}{|V|} \sum_{o \in V} \delta_{\partial \Theta(G,o)} \in \mathcal{P}(\mathbb{R}).$$

Conjecture: G_n Erdős-Rényi $\left(n, \frac{c}{n}\right)$; *c* fixed, $n \to \infty$

1. Λ_{G_n} concentrates around a deterministic $\Lambda \in \mathcal{P}(\mathbb{R})$

・ロト ・ 日 ・ モ ・ モ ・ ・ 日 ・ り へ や

 $\partial \Theta(G, o)$: load induced at o by any balanced allocation on G. Define the **density profile** of G = (V, E) as

$$\Lambda_G = rac{1}{|V|} \sum_{o \in V} \delta_{\partial \Theta(G,o)} \in \mathcal{P}(\mathbb{R}).$$

Conjecture: G_n Erdős-Rényi $\left(n, \frac{c}{n}\right)$; *c* fixed, $n \to \infty$

 Λ_{G_n} concentrates around a deterministic Λ ∈ P(ℝ)
 ρ^{*}(G_n) ^ℙ/_{n→∞} sup{t ∈ ℝ: Λ(t, +∞) > 0}

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem. Assume that $\mathcal{L}[\deg(G, o)] < \infty$.

Theorem. Assume that $\mathcal{L}[\deg(G, o)] < \infty$. Then,

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Lambda_{G_n} \xrightarrow[n \to \infty]{\mathcal{P}(\mathbb{R})} \Lambda_{\mathcal{L}}$$

Theorem. Assume that $\mathcal{L}[\deg(G, o)] < \infty$. Then,

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Lambda_{G_n} \xrightarrow[n \to \infty]{\mathcal{P}(\mathbb{R})} \Lambda_{\mathcal{L}}$$

where $\Lambda_{\mathcal{L}}$ is the solution to a certain optimization problem on \mathcal{L} .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Theorem. Assume that $\mathcal{L}[\deg(G, o)] < \infty$. Then,

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Lambda_{G_n} \xrightarrow[n \to \infty]{\mathcal{P}(\mathbb{R})} \Lambda_{\mathcal{L}}$$

where $\Lambda_{\mathcal{L}}$ is the solution to a certain optimization problem on \mathcal{L} .

Specifically, the excess function $\Phi: t \mapsto \int_{\mathbb{R}} (x-t)^+ \Lambda_{\mathcal{L}}(dx)$

Theorem. Assume that $\mathcal{L}[\deg(G, o)] < \infty$. Then,

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Lambda_{G_n} \xrightarrow[n \to \infty]{\mathcal{P}(\mathbb{R})} \Lambda_{\mathcal{L}}$$

where $\Lambda_{\mathcal{L}}$ is the solution to a certain optimization problem on \mathcal{L} .

Specifically, the excess function $\Phi: t \mapsto \int_{\mathbb{R}} (x-t)^+ \Lambda_{\mathcal{L}}(dx)$ solves

$$\Phi(t) = \max_{f: \mathcal{G}_{\star} \to [0,1]} \left\{ \frac{1}{2} \mathcal{L}\left[\sum_{i \sim o} f(G,i) \wedge f(G,o) \right] - t \mathcal{L}[f(G,o)] \right\}$$

Extend the definition of ρ^{\star} to local weak limits by

 $\varrho^{\star}(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{t \colon \Phi(t) > 0\}$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Extend the definition of ρ^{\star} to local weak limits by

 $\varrho^{\star}(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{t \colon \Phi(t) > 0\}$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

In light of previous result, one expects a continuity principle :

Extend the definition of ρ^{\star} to local weak limits by

$$\varrho^{\star}(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{t \colon \Phi(t) > 0\}$$

In light of previous result, one expects a continuity principle :

$$G_n \xrightarrow{loc.} \mathcal{L} \implies \varrho^*(G_n) \xrightarrow{n \to \infty} \varrho^*(\mathcal{L})$$

Extend the definition of ρ^{\star} to local weak limits by

$$\varrho^{\star}(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{t \colon \Phi(t) > 0\}$$

In light of previous result, one expects a continuity principle :

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \varrho^*(G_n) \xrightarrow[n \to \infty]{} \varrho^*(\mathcal{L})$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Counter-example:

Extend the definition of ρ^{\star} to local weak limits by

 $\varrho^{\star}(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{t \colon \Phi(t) > 0\}$

In light of previous result, one expects a continuity principle :

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \varrho^*(G_n) \xrightarrow[n \to \infty]{} \varrho^*(\mathcal{L})$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \to \mathcal{L}$.

Extend the definition of ρ^{\star} to local weak limits by

 $\varrho^{\star}(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{t \colon \Phi(t) > 0\}$

In light of previous result, one expects a continuity principle :

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \varrho^*(G_n) \xrightarrow[n \to \infty]{} \varrho^*(\mathcal{L})$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \to \mathcal{L}$.

Theorem. G_n uniform with degree distribution $\{\pi_k\}_{k \in \mathbb{N}}$.

Extend the definition of ρ^{\star} to local weak limits by

 $\varrho^{\star}(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{t \colon \Phi(t) > 0\}$

In light of previous result, one expects a continuity principle :

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \varrho^*(G_n) \xrightarrow[n \to \infty]{} \varrho^*(\mathcal{L})$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \to \mathcal{L}$.

Theorem. G_n uniform with degree distribution $\{\pi_k\}_{k \in \mathbb{N}}$. Assume degrees have light tail, i.e. $\limsup_{k \to \infty} \pi_k^{1/k} < 1$.

Extend the definition of ρ^{\star} to local weak limits by

 $\varrho^{\star}(\mathcal{L}) := \sup \operatorname{ess} \Lambda_{\mathcal{L}} = \sup \{t \colon \Phi(t) > 0\}$

In light of previous result, one expects a continuity principle :

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \varrho^*(G_n) \xrightarrow[n \to \infty]{} \varrho^*(\mathcal{L})$$

Counter-example: adding a large but fixed clique to G_n will arbitrarily boost $\varrho^*(G_n)$ without affecting convergence $G_n \to \mathcal{L}$.

Theorem. G_n uniform with degree distribution $\{\pi_k\}_{k \in \mathbb{N}}$. Assume degrees have light tail, i.e. $\limsup_{k \to \infty} \pi_k^{1/k} < 1$. Then,

 $\varrho^{\star}(G_n) \xrightarrow[n \to \infty]{} \varrho^{\star}(\mathcal{L}), \text{ where } \mathcal{L} = \text{Galton-Watson}(\pi).$

Theorem. In the case where $\mathcal{L} = \text{GALTON-WATSON}(\pi)$,

$$\Phi(t) = \max_{Q \in \mathcal{P}([0,1])} \left\{ \frac{\mathbb{E}[D]}{2} \mathbb{P}\left(\xi_1 + \xi_2 > 1\right) - t \mathbb{P}\left(\xi_1 + \dots + \xi_D > t\right) \right\}$$

Theorem. In the case where $\mathcal{L} = \text{GALTON-WATSON}(\pi)$,

$$\Phi(t) = \max_{Q\in\mathcal{P}([0,1])} \left\{ rac{\mathbb{E}[D]}{2} \mathbb{P}\left(\xi_1+\xi_2>1
ight) - t \mathbb{P}\left(\xi_1+\dots+\xi_D>t
ight)
ight\}$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are IID with law Q, independent of D.

Theorem. In the case where $\mathcal{L} = \text{GALTON-WATSON}(\pi)$,

$$\Phi(t) = \max_{Q\in\mathcal{P}([0,1])} \left\{ rac{\mathbb{E}[D]}{2} \mathbb{P}\left(\xi_1+\xi_2>1
ight) - t \mathbb{P}\left(\xi_1+\dots+\xi_D>t
ight)
ight\}$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are IID with law Q, independent of D. The maximum is over all choices of $Q \in \mathcal{P}([0, 1])$ such that

Theorem. In the case where $\mathcal{L} = \text{GALTON-WATSON}(\pi)$,

$$\Phi(t) = \max_{Q\in\mathcal{P}([0,1])} \left\{ rac{\mathbb{E}[D]}{2} \mathbb{P}\left(\xi_1+\xi_2>1
ight) - t \mathbb{P}\left(\xi_1+\dots+\xi_D>t
ight)
ight\}$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are IID with law Q, independent of D. The maximum is over all choices of $Q \in \mathcal{P}([0, 1])$ such that

$$\xi \stackrel{d}{=} [1 - t + \xi_1 + \dots + \xi_D]_0^1$$

Theorem. In the case where $\mathcal{L} = \text{GALTON-WATSON}(\pi)$,

$$\Phi(t) = \max_{Q\in\mathcal{P}([0,1])} \left\{ rac{\mathbb{E}[D]}{2} \mathbb{P}\left(\xi_1+\xi_2>1
ight) - t \mathbb{P}\left(\xi_1+\dots+\xi_D>t
ight)
ight\}$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are IID with law Q, independent of D. The maximum is over all choices of $Q \in \mathcal{P}([0, 1])$ such that

$$\xi \stackrel{d}{=} [1 - t + \xi_1 + \dots + \xi_D]_0^1$$

where $[\bullet]_0^1$ denotes projection onto [0,1] : $[x]_0^1 = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \in [0,1] \\ 1 & \text{if } x > 1 \end{cases}$

Theorem. In the case where $\mathcal{L} = \text{GALTON-WATSON}(\pi)$,

$$\Phi(t) = \max_{Q\in\mathcal{P}([0,1])} \left\{ rac{\mathbb{E}[D]}{2} \mathbb{P}\left(\xi_1+\xi_2>1
ight) - t \mathbb{P}\left(\xi_1+\dots+\xi_D>t
ight)
ight\}$$

where $D \sim \pi$ and $\{\xi_k\}_{k \geq 1}$ are IID with law Q, independent of D. The maximum is over all choices of $Q \in \mathcal{P}([0, 1])$ such that

$$\xi \stackrel{d}{=} [1 - t + \xi_1 + \dots + \xi_D]_0^1$$

where $[\bullet]_0^1$ denotes projection onto [0,1]: $[x]_0^1 = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \in [0,1] \\ 1 & \text{if } x > 1 \end{cases}$

Distributional fixed-point equation : can be solved numerically.

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$

 $k \in \mathbb{N}^*$ fixed

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$ $k \in \mathbb{N}^*$ fixed

Question: does G_n contain a k-dense subgraph?

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$ $k \in \mathbb{N}^*$ fixed

Question: does G_n contain a k-dense subgraph?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Define $f_k(x) = e^x - \left(1 + x + \dots + \frac{x^k}{k!}\right)$

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$ $k \in \mathbb{N}^*$ fixed

Question: does G_n contain a k-dense subgraph?

Define $f_k(x) = e^x - \left(1 + x + \dots + \frac{x^k}{k!}\right)$

Set $c_* = \frac{xe^x}{f_{k-1}(x)}$, where x unique solution to $\frac{xf_{k-1}(x)}{f_k(x)} = 2k$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$ $k \in \mathbb{N}^*$ fixed

Question: does G_n contain a k-dense subgraph?

Define $f_k(x) = e^x - \left(1 + x + \dots + \frac{x^k}{k!}\right)$

Set $c_* = \frac{xe^x}{f_{k-1}(x)}$, where x unique solution to $\frac{xf_{k-1}(x)}{f_k(x)} = 2k$.

Theorem. With probability tending to one as $n \to \infty$,

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$ $k \in \mathbb{N}^*$ fixed

Question: does G_n contain a k-dense subgraph?

Define $f_k(x) = e^x - \left(1 + x + \dots + \frac{x^k}{k!}\right)$

Set $c_* = \frac{xe^x}{f_{k-1}(x)}$, where x unique solution to $\frac{xf_{k-1}(x)}{f_k(x)} = 2k$.

Theorem. With probability tending to one as $n \to \infty$,

• If $c < c_*$ then G_n does not contain a k-dense subgraph

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$ $k \in \mathbb{N}^*$ fixed

Question: does G_n contain a k-dense subgraph?

Define $f_k(x) = e^x - \left(1 + x + \dots + \frac{x^k}{k!}\right)$

Set $c_* = \frac{xe^x}{f_{k-1}(x)}$, where x unique solution to $\frac{xf_{k-1}(x)}{f_k(x)} = 2k$.

Theorem. With probability tending to one as $n \to \infty$,

• If $c < c_*$ then G_n does not contain a k-dense subgraph

• If $c > c_*$ then G_n contains a k-dense subgraph

 G_n : Erdős-Rényi $\left(n, \frac{c}{n}\right)$ $k \in \mathbb{N}^*$ fixed

Question: does G_n contain a k-dense subgraph?

Define $f_k(x) = e^x - \left(1 + x + \dots + \frac{x^k}{k!}\right)$

Set $c_* = \frac{xe^x}{f_{k-1}(x)}$, where x unique solution to $\frac{xf_{k-1}(x)}{f_k(x)} = 2k$.

Theorem. With probability tending to one as $n \to \infty$,

- ▶ If $c < c_*$ then G_n does not contain a k-dense subgraph
- If $c > c_*$ then G_n contains a k-dense subgraph

k	2	3	4	5	6	7	8	9	10
<i>C</i> *	3.59	5.76	7.84	9.90	11.93	13.95	15.97	17.98	19.98

くちゃく 御 マイボット 中国 うくの

Microscopic contribution:

Microscopic contribution: $\partial \Theta(G, o)$

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

 $[G,o]_R \equiv [G',o']_R \implies \left|\partial\Theta(G,o) - \partial\Theta(G',o')\right| \leq f(R),$

where $f(R) \rightarrow 0$ as $R \rightarrow \infty$.

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

 $[G,o]_R \equiv [G',o']_R \implies \left| \partial \Theta(G,o) - \partial \Theta(G',o') \right| \leq f(R),$

where $f(R) \rightarrow 0$ as $R \rightarrow \infty$.

Counter-example: let G be a d-regular graph with girth > R

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

 $[G,o]_R \equiv [G',o']_R \implies \left| \partial \Theta(G,o) - \partial \Theta(G',o') \right| \leq f(R),$

where $f(R) \rightarrow 0$ as $R \rightarrow \infty$.

Counter-example: let G be a d-regular graph with girth > R

• $\partial \Theta(G, o) = \frac{d}{2}$

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

 $[G,o]_R \equiv [G',o']_R \implies \left| \partial \Theta(G,o) - \partial \Theta(G',o') \right| \le f(R),$

where $f(R) \rightarrow 0$ as $R \rightarrow \infty$.

Counter-example: let G be a d-regular graph with girth > R

- $\partial \Theta(G, o) = \frac{d}{2}$
- $[G, o]_R$ is a tree

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

 $[G,o]_R \equiv [G',o']_R \implies \left| \partial \Theta(G,o) - \partial \Theta(G',o') \right| \leq f(R),$

where $f(R) \rightarrow 0$ as $R \rightarrow \infty$.

Counter-example: let G be a d-regular graph with girth > R

- $\partial \Theta(G,o) = \frac{d}{2}$
- $[G, o]_R$ is a tree
- $\partial \Theta \leq \varrho^{\star} < 1$ on any tree

Microscopic contribution: $\partial \Theta(G, o)$

Hope: $\partial \Theta(G, o)$ is insensitive to what lies far away from o:

 $[G,o]_R \equiv [G',o']_R \implies \left| \partial \Theta(G,o) - \partial \Theta(G',o') \right| \leq f(R),$

where $f(R) \rightarrow 0$ as $R \rightarrow \infty$.

Counter-example: let G be a d-regular graph with girth > R

- $\partial \Theta(G, o) = \frac{d}{2}$
- $[G, o]_R$ is a tree
- $\partial \Theta \leq \varrho^{\star} < 1$ on any tree

Balanced loads exhibit long-range dependences !

 $\varepsilon > 0$: perturbative parameter

 $\varepsilon > 0$: perturbative parameter

Definition. An allocation θ on G = (V, E) is ε -balanced if

$$\theta(i,j) = \left[\frac{1}{2} + \frac{\partial\theta(i) - \partial\theta(j)}{2\varepsilon}\right]_{0}^{1}$$

 $\varepsilon > 0$: perturbative parameter

Definition. An allocation θ on G = (V, E) is ε -balanced if

$$\theta(i,j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon}\right]_{0}^{1}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

In particular, $\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i,j) = 0.$

 $\varepsilon > 0$: perturbative parameter

Definition. An allocation θ on G = (V, E) is ε -balanced if

$$\theta(i,j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon}\right]_{0}^{1}$$

In particular, $\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i,j) = 0.$

Claim 1. There exists a unique ε -balanced allocation Θ_{ε} .

 $\varepsilon > 0$: perturbative parameter

Definition. An allocation θ on G = (V, E) is ε -balanced if

$$\theta(i,j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon}\right]_{0}^{1}$$

In particular, $\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i,j) = 0.$

Claim 1. There exists a unique ε -balanced allocation Θ_{ε} . **Claim 2.** If $[G, o]_R \equiv [G', o']_R$, then

 $\varepsilon > 0$: perturbative parameter

Definition. An allocation θ on G = (V, E) is ε -balanced if

$$\theta(i,j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon}\right]_{0}^{1}$$

In particular, $\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i,j) = 0.$

Claim 1. There exists a unique ε -balanced allocation Θ_{ε} . **Claim 2.** If $[G, o]_R \equiv [G', o']_R$, then

$$\left|\partial \Theta_arepsilon({\sf G},{\sf o}) - \partial \Theta_arepsilon({\sf G}',{\sf o}')
ight| \leq \Delta \left(1+rac{2arepsilon}{\Delta}
ight)^{-R}.$$

・ロト ・ 西 ト ・ 田 ト ・ 日 ・ うへつ

 $\varepsilon > 0$: perturbative parameter

Definition. An allocation θ on G = (V, E) is ε -balanced if

$$\theta(i,j) = \left[\frac{1}{2} + \frac{\partial \theta(i) - \partial \theta(j)}{2\varepsilon}\right]_{0}^{1}$$

In particular, $\partial \theta(i) \leq \partial \theta(j) - \varepsilon \implies \theta(i,j) = 0.$

Claim 1. There exists a unique ε -balanced allocation Θ_{ε} . **Claim 2.** If $[G, o]_R \equiv [G', o']_R$, then

$$\left|\partial \Theta_arepsilon({\sf G}, {\sf o}) - \partial \Theta_arepsilon({\sf G}', {\sf o}')
ight| \leq \Delta \left(1 + rac{2arepsilon}{\Delta}
ight)^{-R}$$

Corollary. Θ_{ε} extends continuously to infinite graphs !

Proof outline

Assume $G_n \xrightarrow[n \to \infty]{\text{loc.}} \mathcal{L}$ with $\int_{\mathcal{G}_*} \deg d\mathcal{L} < \infty$.

Assume $G_n \xrightarrow[n \to \infty]{\text{loc.}} \mathcal{L}$ with $\int_{\mathcal{G}_{\star}} \deg d\mathcal{L} < \infty$.

Consider a test function $\psi \colon \mathbb{R} \to \mathbb{R}$ (bounded, Lipschitz)

Assume $G_n \xrightarrow[n \to \infty]{\text{loc.}} \mathcal{L}$ with $\int_{\mathcal{G}_*} \deg d\mathcal{L} < \infty$. Consider a test function $\psi \colon \mathbb{R} \to \mathbb{R}$ (bounded, Lipschitz) $\frac{1}{|V_n|} \sum_{o \in V} \psi \left(\partial \Theta(G_n, o) \right) \xrightarrow[n \to \infty]{??} \int_{\mathcal{G}_*} (\psi \circ \partial \Theta) d\mathcal{L}$

Assume $G_n \xrightarrow[n \to \infty]{\text{loc.}} \mathcal{L}$ with $\int_{\mathcal{G}_*} \deg d\mathcal{L} < \infty$. Consider a test function $\psi \colon \mathbb{R} \to \mathbb{R}$ (bounded, Lipschitz) $\frac{1}{|V_n|} \sum_{o \in V} \psi \left(\partial \Theta(G_n, o) \right) \xrightarrow[n \to \infty]{??} \int_{\mathcal{G}_*} (\psi \circ \partial \Theta) d\mathcal{L}$

$$\frac{1}{|V_n|} \sum_{o \in V_n} \psi \left(\partial \Theta_{\varepsilon}(G_n, o) \right) \quad \xrightarrow[n \to \infty]{} \quad \int_{\mathcal{G}_{\star}} \left(\psi \circ \partial \Theta_{\varepsilon} \right) d\mathcal{L}$$

・ロト ・ 母 ト ・ 王 ト ・ 王 ・ つへぐ

Assume $G_n \xrightarrow{\text{loc.}} \mathcal{L}$ with $\int_{\mathcal{G}_+} \deg d\mathcal{L} < \infty$. Consider a test function $\psi \colon \mathbb{R} \to \mathbb{R}$ (bounded, Lipschitz) $\frac{1}{|V_n|} \sum_{o \in V} \psi \left(\partial \Theta(G_n, o) \right) \xrightarrow{???} \int_{\mathcal{G}_{\star}} (\psi \circ \partial \Theta) d\mathcal{L}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Assume $G_n \xrightarrow{\text{loc.}} \mathcal{L}$ with $\int_{\mathcal{G}_+} \deg d\mathcal{L} < \infty$. Consider a test function $\psi \colon \mathbb{R} \to \mathbb{R}$ (bounded, Lipschitz) $\begin{array}{ccc} \frac{1}{|V_n|} \sum_{o \in V_n} \psi \left(\partial \Theta(G_n, o) \right) & \xrightarrow[n \to \infty]{} & \int_{\mathcal{G}_{\star}} (\psi \circ \partial \Theta) d\mathcal{L} \\ & & & & & \\ & & & & \\ & & & & \\ \frac{1}{|V_n|} \sum_{o \in V_n} \psi \left(\partial \Theta_{\varepsilon}(G_n, o) \right) & \xrightarrow[n \to \infty]{} & \int_{\mathcal{G}_{\star}} (\psi \circ \partial \Theta_{\varepsilon}) d\mathcal{L} \end{array}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** of the graph.

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** of the graph.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** of the graph.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** of the graph.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

- ► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of L may sometimes even allow for an explicit determination of Φ(L).

- ► In the sparse regime, many important graph parameters Φ are essentially determined by the **local geometry** of the graph.
- ► This can be rigorously formalized by a continuity theorem:

$$G_n \xrightarrow[n \to \infty]{loc.} \mathcal{L} \implies \Phi(G_n) \xrightarrow[n \to \infty]{} \Phi(\mathcal{L})$$

- ► Algorithmic implication: Φ is efficiently approximable via local distributed algorithms, independently of network size.
- Analytic implication: Φ admits a limit along most sparse graph sequences. The distributional self-similarity of *L* may sometimes even allow for an explicit determination of Φ(*L*).
- Many examples: spanning trees, spectrum and rank, matching polynomial, Ising models, dense subgraphs...

Thank you !



(ロト (四) (注) (注) (注) つくで