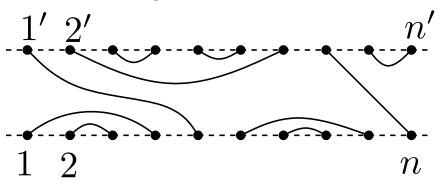
Combinatoire des algèbres de Temperley-Lieb finies et affines

Philippe Nadeau

Journées ALEA, 18 Mars 2014.

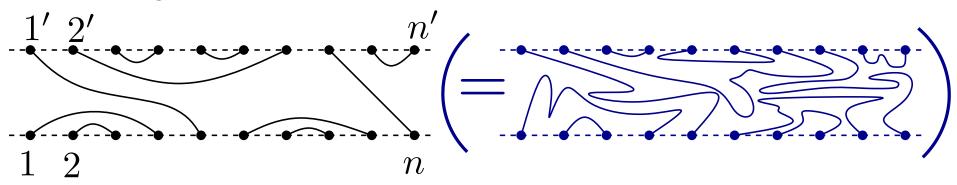
On fixe un entier $n \geq 2$ et un corps \mathbb{K} pour tout l'exposé.

Base: Diagrammes non croisés entre 2n points.



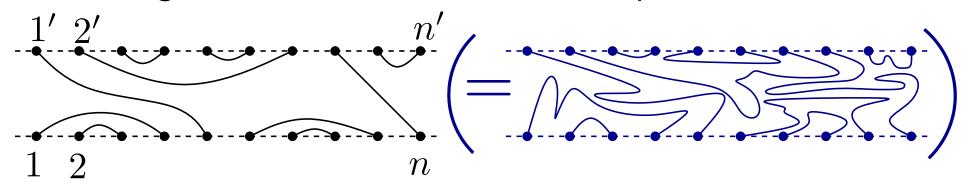
On fixe un entier $n \geq 2$ et un corps \mathbb{K} pour tout l'exposé.

Base: Diagrammes non croisés entre 2n points.

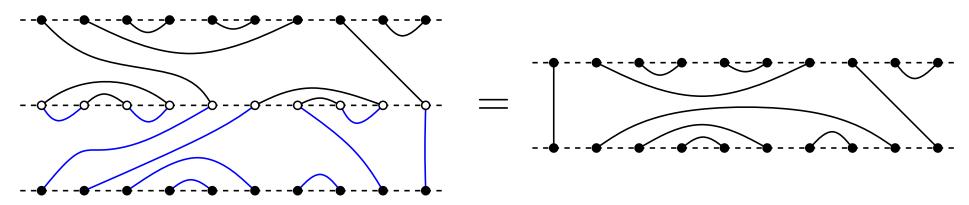


On fixe un entier $n \geq 2$ et un corps \mathbb{K} pour tout l'exposé.

Base: Diagrammes non croisés entre 2n points.

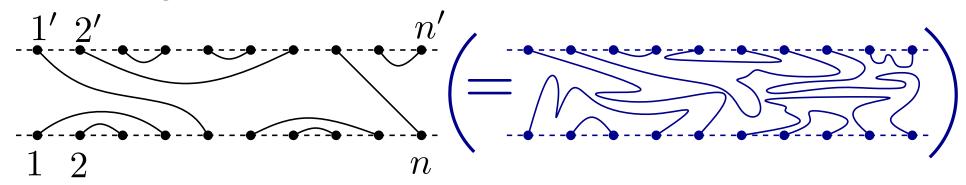


Produit: Concaténation + suppression des boucles fermées.

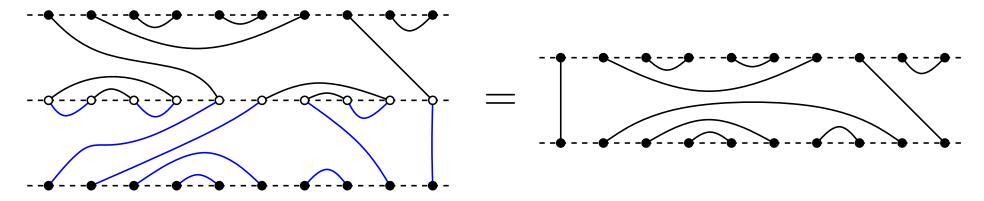


On fixe un entier $n \geq 2$ et un corps \mathbb{K} pour tout l'exposé.

Base: Diagrammes non croisés entre 2n points.



Produit: Concaténation + suppression des boucles fermées.



C'est une algèbre associative TL_n .

Elle a dimension C_n le nième nombre de Catalan.

• Générateurs : $e_1, e_2, \ldots, e_{n-1}$

$$\prod_{i} \bigvee_{i+1} \prod_{i+1} E_i$$

• Générateurs : $e_1, e_2, \ldots, e_{n-1}$ $\qquad \qquad \boxed{ \qquad \qquad } \underbrace{ \qquad \qquad }_{i \ i+1} \underbrace{ \qquad \qquad }_{i \ i+1} E_i$

$$\prod_{i \ i+1} \bigvee_{i \ i+1} E_i$$

Tout diagramme peut être écrit comme concaténation de E_i .

• Générateurs : $e_1, e_2, \ldots, e_{n-1}$

$$\prod_{i \ i+1} \nabla \prod_{i \ i+1} E_i$$

Tout diagramme peut être écrit comme concaténation de E_i .

Relations

$$e_i^2 = e_i$$

• Générateurs : $e_1, e_2, \ldots, e_{n-1}$

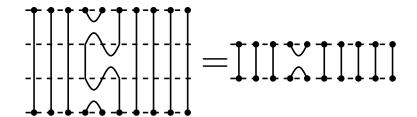
$$\prod_{i \ i+1} \bigvee_{i \ i+1} \prod_{i \ i+1} E_i$$

Tout diagramme peut être écrit comme concaténation de E_i .

Relations

$$e_i^2 = e_i$$

$$e_i e_{i\pm 1} e_i = e_i$$



• Générateurs : $e_1, e_2, \ldots, e_{n-1}$

$$\prod_{i} \bigvee_{i+1} \prod_{i+1} E_i$$

Tout diagramme peut être écrit comme concaténation de E_i .

• Relations

$$e_i^2 = e_i$$

$$e_i e_{i+1} e_i = e_i$$

$$e_i e_j = e_j e_i \text{ if } |j-i| > 1$$

$$e_i^2 = e_i$$

$$e_i e_{i\pm 1} e_i = e_i$$

$$e_i e_j = e_j e_i \text{ if } |j-i| > 1$$

$$|j-j| = |j-j| =$$

• Générateurs : $e_1, e_2, \ldots, e_{n-1}$

$$\prod_{i \ i+1} \nabla \prod_{i \ i+1} E_i$$

Tout diagramme peut être écrit comme concaténation de E_i .

Relations

$$e_i e_i = e_i$$

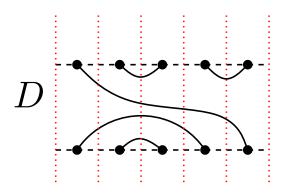
$$e_i e_{i\pm 1} e_i = e_i$$

$$e_i e_j = e_j e_i \text{ if } |j-i| > 1$$

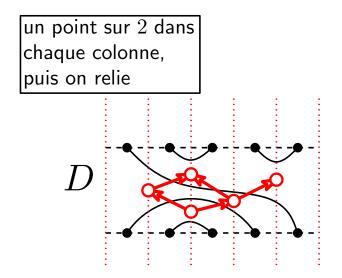
$$|j| = |j| = |j|$$

Théorème [Kauffman '87] Les générateurs et relations ci-dessus définissent l'algèbre de Temperley-Lieb TL_n .

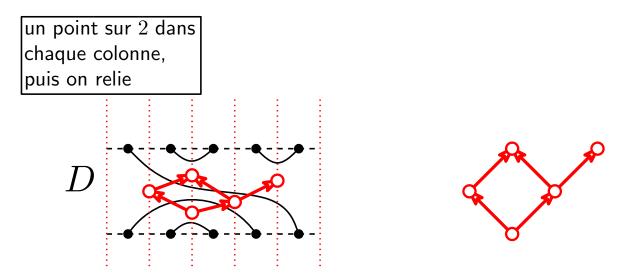
Prenons un diagramme sans boucles, avec liens monotones.



Prenons un diagramme sans boucles, avec liens monotones.

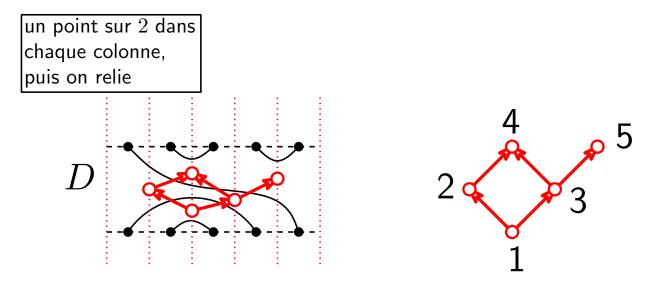


Prenons un diagramme sans boucles, avec liens monotones.



À chaque diagramme est associé un graphe orienté acyclique.

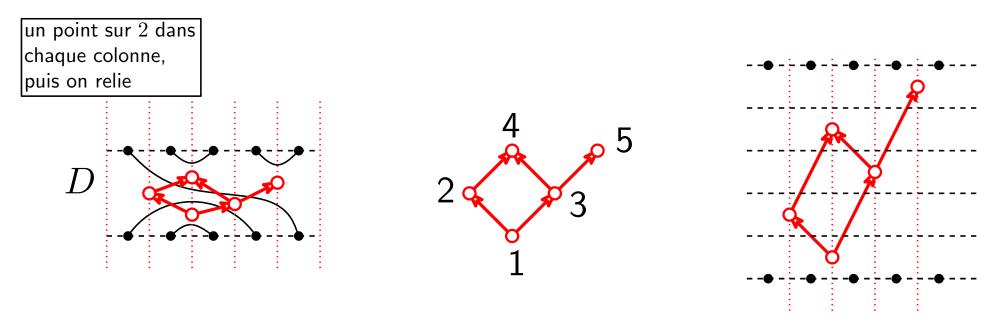
Prenons un diagramme sans boucles, avec liens monotones.



À chaque diagramme est associé un graphe orienté acyclique.

On peut alors choisir un parcours des sommets "compatible": un sommet n'est visité qu'après tous ses antécédents.

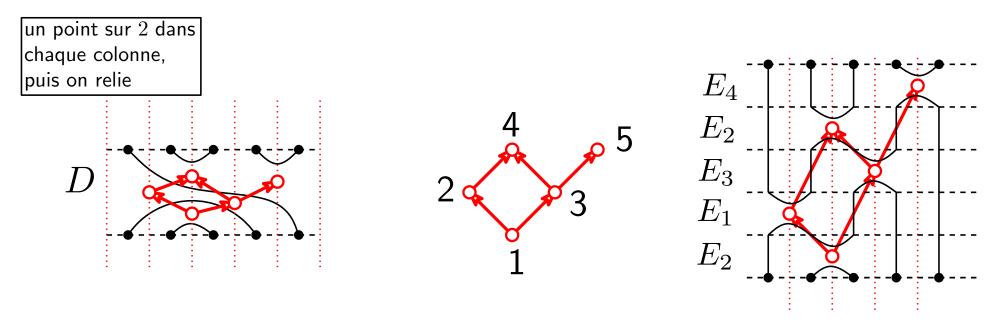
Prenons un diagramme sans boucles, avec liens monotones.



À chaque diagramme est associé un graphe orienté acyclique.

On peut alors choisir un parcours des sommets "compatible": un sommet n'est visité qu'après tous ses antécédents.

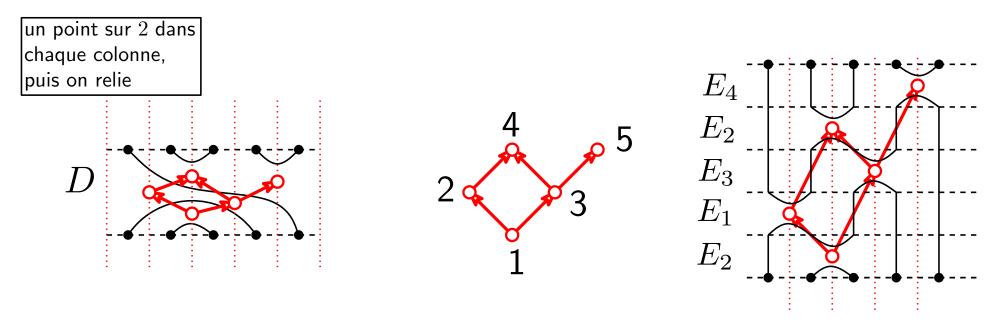
Prenons un diagramme sans boucles, avec liens monotones.



À chaque diagramme est associé un graphe orienté acyclique.

On peut alors choisir un parcours des sommets "compatible": un sommet n'est visité qu'après tous ses antécédents.

Prenons un diagramme sans boucles, avec liens monotones.

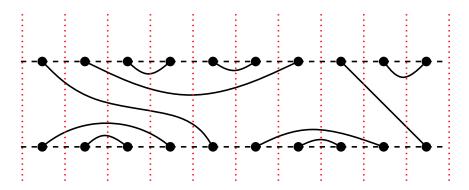


À chaque diagramme est associé un graphe orienté acyclique.

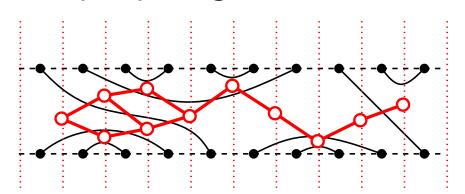
On peut alors choisir un parcours des sommets "compatible": un sommet n'est visité qu'après tous ses antécédents.

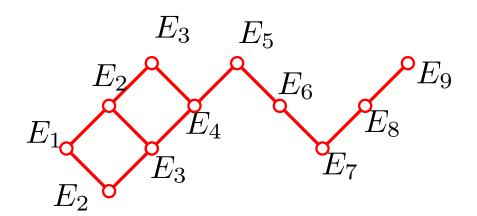
Ainsi $D = E_2 E_1 E_3 E_2 E_4$. En changeant de parcours on obtient tous les mots les plus courts représentant D.

Un exemple plus gros

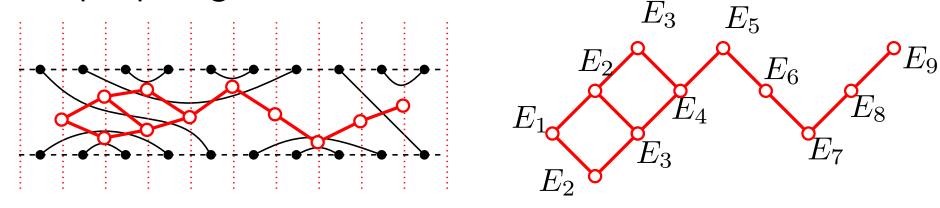


Un exemple plus gros



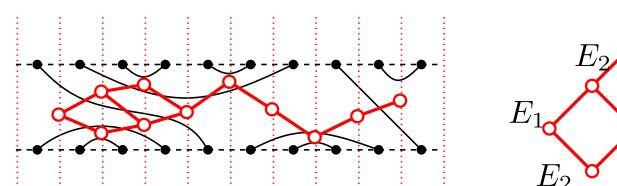


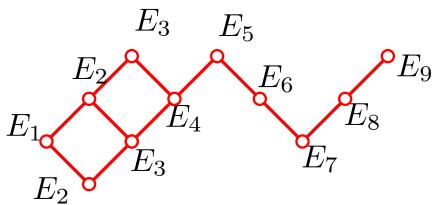
Un exemple plus gros



Les graphes obtenus sont appelés empilements alternants: pour tout i, entre deux sommets E_i , il y a toujours E_{i-1} et E_{i+1} .

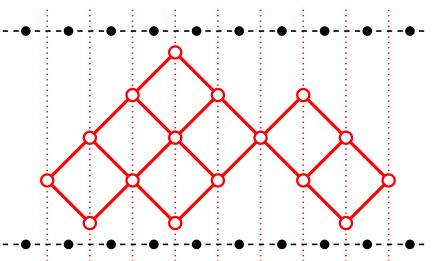
Un exemple plus gros



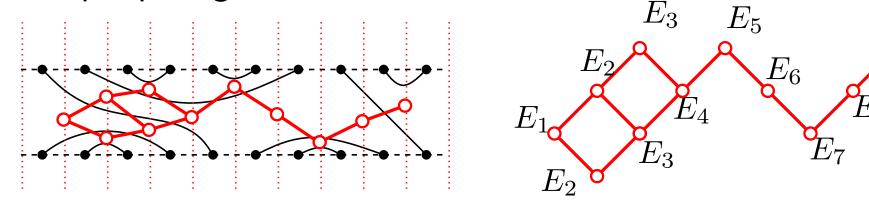


Les graphes obtenus sont appelés empilements alternants: pour tout i, entre deux sommets E_i , il y a toujours E_{i-1} et E_{i+1} .

Réciproquement



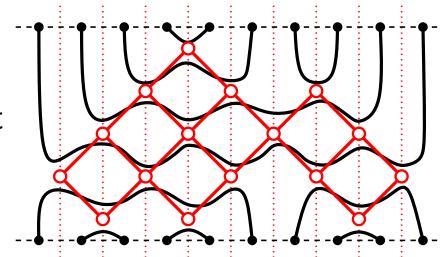
Un exemple plus gros



Les graphes obtenus sont appelés empilements alternants: pour tout i, entre deux sommets E_i , il y a toujours E_{i-1} et E_{i+1} .

 E_{9}

Réciproquement



Proposition La construction précédente est une bijection entre la base de diagrammes de TL_n et les empilements alternants.

Comme on a vu, à chaque empilement correspond l'ensemble de mots minimaux sur les E_i représentant le diagramme correspondant.

Proposition La construction précédente est une bijection entre la base de diagrammes de TL_n et les empilements alternants.

Comme on a vu, à chaque empilement correspond l'ensemble de mots minimaux sur les E_i représentant le diagramme correspondant.

Permutations: Si on remplace E_i dans ces mots par la transposition $(i, i + 1) \in S_n$, quelles permutations obtient-on?

Proposition La construction précédente est une bijection entre la base de diagrammes de TL_n et les empilements alternants.

Comme on a vu, à chaque empilement correspond l'ensemble de mots minimaux sur les E_i représentant le diagramme correspondant.

Permutations: Si on remplace E_i dans ces mots par la transposition $(i, i + 1) \in S_n$, quelles permutations obtient-on?

Théorème [Billey, Jockush, Stanley '93] Cela définit une bijection des empilements alternants vers les permutations sans motif 321.

Proposition La construction précédente est une bijection entre la base de diagrammes de TL_n et les empilements alternants.

Comme on a vu, à chaque empilement correspond l'ensemble de mots minimaux sur les E_i représentant le diagramme correspondant.

Permutations: Si on remplace E_i dans ces mots par la transposition $(i, i + 1) \in S_n$, quelles permutations obtient-on?

Théorème [Billey, Jockush, Stanley '93] Cela définit une bijection des empilements alternants vers les permutations sans motif 321.

Diagrammes \leftarrow Empilements \leftarrow Permutations

Longueur minimale en les E_i Nombre de sommets Nombre d'inversions

Définie indépendamment dans [Fan '97] et [Graham '95], elle est donnée par la présentation suivante

$$-e_i^2 = e_i$$

Définie indépendamment dans [Fan '97] et [Graham '95], elle est donnée par la présentation suivante

$$\widetilde{TL}_n$$

- Générateurs: $e_0, e_1, e_2, \ldots, e_{n-1}$
- Relations:

$$-e_i^2 = e_i$$

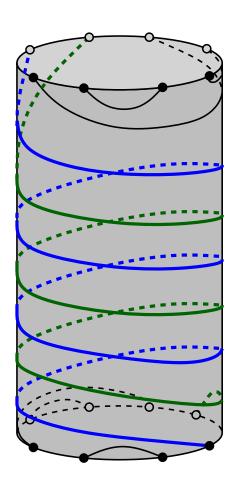
- $\begin{array}{c|c} \widetilde{TL}_n & -e_i^2 = e_i \\ -e_i e_{i\pm 1} e_i = e_i \text{ indices modulo } n \\ -e_i e_j = e_j e_i \text{ sinon} \end{array}$

Buts:

- Représentation par un calcul une algèbre de diagrammes.
- Interprétation comme empilements.
- Questions énumératives.

Les diagrammes affines

Idée: remplacer une structure "linéaire" par une "cyclique" \rightarrow On va dessiner les diagrammes sur un cylindre.



- Liens non croisés sur la surface du cylindre (à isotopie près) joignant les 2n points fixés.
- On n'efface pas les boucles fermées autour du cylindre ("non contractiles").

Diagrammes $E_0, E_1, \ldots, E_{n-1}$ satisfont les relations de TL_n .

Les diagrammes affines

Idée: remplacer une structure "linéaire" par une "cyclique" \rightarrow On va dessiner les diagrammes sur un cylindre.

2 choses à montrer:

- Caractérisation des diagrammes engendrés par les E_i (diagrammes admissibles);
- Montrer que l'algèbre obtenue n'est pas trop petite, i.e. ne satisfait pas d'autres relations.

Les diagrammes affines

Idée: remplacer une structure "linéaire" par une "cyclique" → On va dessiner les diagrammes sur un cylindre.

2 choses à montrer:

- Caractérisation des diagrammes engendrés par les E_i (diagrammes admissibles);
- Montrer que l'algèbre obtenue n'est pas trop petite, i.e. ne satisfait pas d'autres relations.

Theorem [Fan and Green '97] L'algèbre des diagrammes admissibles est isomorphe à \widetilde{TL}_n .

La preuve est un peu technique.

→ On simplifie en passant par les empilements.

Empilements affines

Par les travaux de [Fan '97] [Graham '95], on sait que TL_n a comme base les mots minimaux sur les e_i à commutation près.

Empilements affines

Par les travaux de [Fan '97] [Graham '95], on sait que TL_n a comme base les mots minimaux sur les e_i à commutation près.

Dans [Biagioli, Jouhet, N '13], on décrit précisément les empilements affines correspondant à de tels mots.

ightarrow Ces empilements forment une base de TL_n .

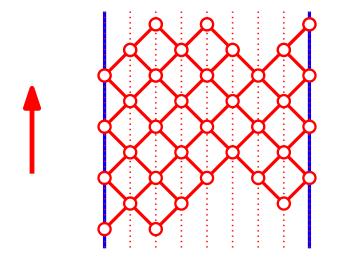
Empilements affines

Par les travaux de [Fan '97] [Graham '95], on sait que TL_n a comme base les mots minimaux sur les e_i à commutation près.

Dans [Biagioli, Jouhet, N '13], on décrit précisément les empilements affines correspondant à de tels mots.

ightarrow Ces empilements forment une base de TL_n .

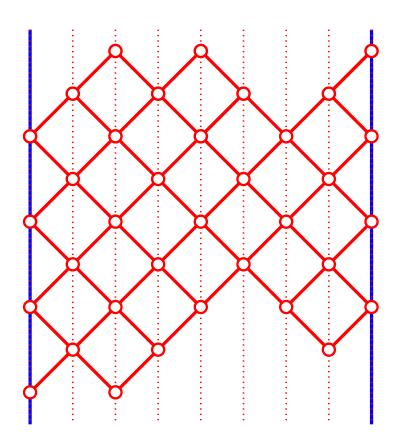
Pas de surprise: ce sont les graphes orientés acycliques tels que les arêtes entre e_i et e_{i+1} alternent.



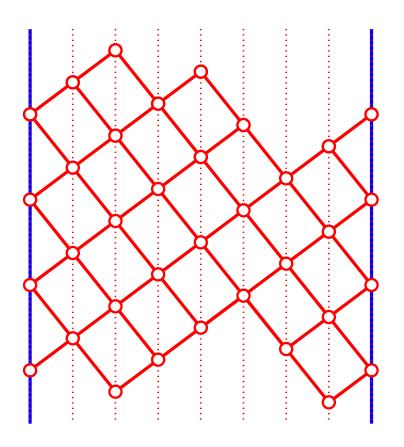
On est sur un cylindre

 \rightarrow on identifie les deux lignes bleues.

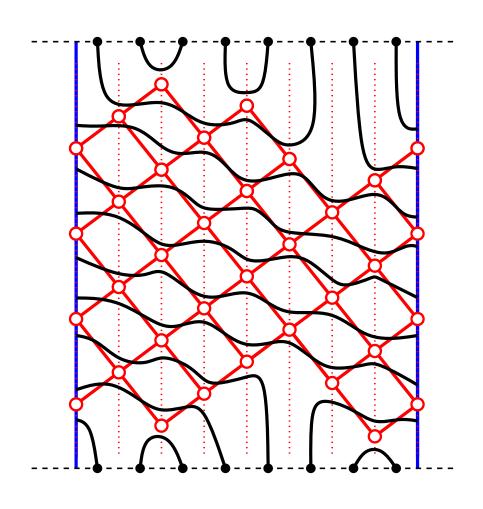
Empilements affines \longrightarrow Diagrammes



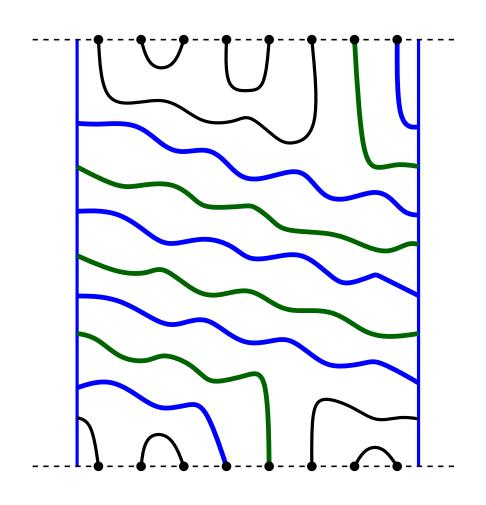
Empilements affines \longrightarrow Diagrammes



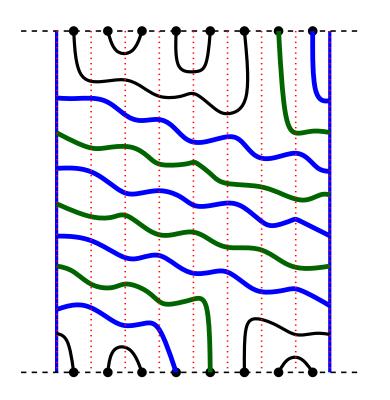
Empilements affines — Diagrammes

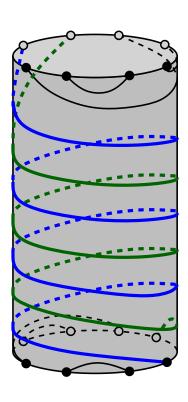


Empilements affines \longrightarrow Diagrammes

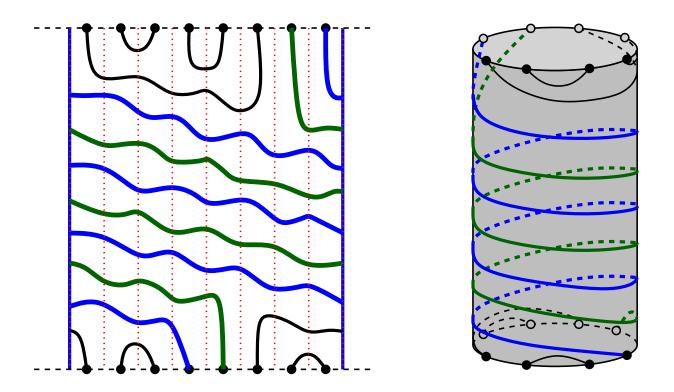


Empilements affines \longrightarrow Diagrammes



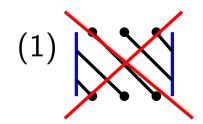


Empilements affines — Diagrammes



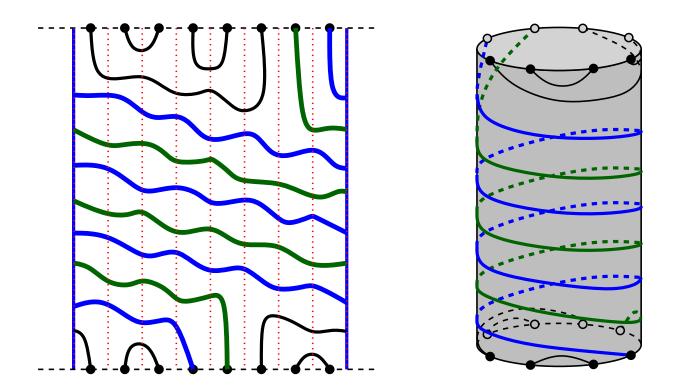
Conséquence: Un diagramme est admissible ssi

- (1) D non trivial $\Rightarrow D$ contient un lien horizontal.
- (2) Chaque colonne pointillée coupe un nombre pair de liens.





Empilements affines — Diagrammes



Conséquence: Un diagramme est admissible ssi

- (1) D non trivial $\Rightarrow D$ contient un lien horizontal.
- (2) Chaque colonne pointillée coupe un nombre pair de liens.

⇒ Nouvelle preuve du résultat de Fan et Greene.

Énumération

Définition La croissance de l'algèbre TL_n est la fonction $\ell \mapsto G^{(n)}(\ell)$ donnant la dimension de l'espace vectoriel engendré par les produits d'au plus ℓ générateurs.

 $G^{(n)}(\ell)$ est donc égal au nombre d'empilements avec au plus ℓ sommets:

$$G^{(n)}(\ell) = a_0^{(n)} + a_1^{(n)} + \ldots + a_\ell^{(n)}.$$

Énumération

Définition La croissance de l'algèbre TL_n est la fonction $\ell \mapsto G^{(n)}(\ell)$ donnant la dimension de l'espace vectoriel engendré par les produits d'au plus ℓ générateurs.

 $G^{(n)}(\ell)$ est donc égal au nombre d'empilements avec au plus ℓ sommets:

$$G^{(n)}(\ell) = a_0^{(n)} + a_1^{(n)} + \dots + a_\ell^{(n)}.$$

Facile de montrer que $(a_{\ell}^{(n)})_{\ell \geq 0}$ est une suite ultimement périodique de période n ([Hanusa-Jones '09].

ightarrow On déduit que TL_n a une croissance linéaire.

Énumération

Définition La croissance de l'algèbre TL_n est la fonction $\ell \mapsto G^{(n)}(\ell)$ donnant la dimension de l'espace vectoriel engendré par les produits d'au plus ℓ générateurs.

 $G^{(n)}(\ell)$ est donc égal au nombre d'empilements avec au plus ℓ sommets:

$$G^{(n)}(\ell) = a_0^{(n)} + a_1^{(n)} + \dots + a_\ell^{(n)}.$$

Facile de montrer que $(a_{\ell}^{(n)})_{\ell \geq 0}$ est une suite ultimement périodique de période n ([Hanusa-Jones '09].

- ightarrow On déduit que TL_n a une croissance linéaire.
- Dans [Biagioli, Jouhet, N '13], construction d'une bijection des empilements vers une classe de chemins.
- \rightarrow Décompositions récursives permettant de calculer $a_{\ell}^{(n)}$.

Problème Calculer la plus petite période pour cette suite ?

Périodicité

Définissons
$$\widetilde{A}^{(n)}(q) = \sum_{\ell \geq 0} a_{\ell}^{(n)} q^{\ell}$$

$$\widetilde{A}^{(3)}(q) = 1 + 3q + 6q^2 + 6q^3 + 6q^4 + \cdots$$

$$\widetilde{A}^{(4)}(q) = 1 + 4q + 10q^2 + 16q^3 + 18q^4 + 16q^5 + 18q^6 + \cdots$$

$$\widetilde{A}^{(5)}(q) = 1 + 5q + 15q^2 + 30q^3 + 45q^4 + 50q^5 + 50q^6 + 50q^7 + 50q^8 + 50q^9 + \cdots$$

$$\widetilde{A}^{(6)}(q) = 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 +150q^7 + 156q^8 + 152q^9 + 156q^{10} + 150q^{11} + 158q^{12} +150q^{13} + 156q^{14} + 152q^{15} + 156q^{16} + 150q^{17} + 158q^{18} + \cdots$$

Périodicité

Définissons
$$\widetilde{A}^{(n)}(q) = \sum_{\ell \geq 0} a_{\ell}^{(n)} q^{\ell}$$

$$\widetilde{A}^{(3)}(q) = 1 + 3q + 6q^2 + 6q^3 + 6q^4 + \cdots$$

$$\widetilde{A}^{(4)}(q) = 1 + 4q + 10q^2 + 16q^3 + 18q^4 + 16q^5 + 18q^6 + \cdots$$

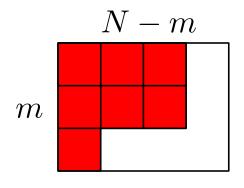
$$\widetilde{A}^{(5)}(q) = 1 + 5q + 15q^2 + 30q^3 + 45q^4 + 50q^5 + 50q^6 + 50q^7 + 50q^8 + 50q^9 + \cdots$$

$$\widetilde{A}^{(6)}(q) = 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 +150q^7 + 156q^8 + 152q^9 + 156q^{10} + 150q^{11} + 158q^{12} +150q^{13} + 156q^{14} + 152q^{15} + 156q^{16} + 150q^{17} + 158q^{18} + \cdots$$

Theorem [Jouhet,N.] La période minimale de $(a_{\ell}^{(n)})_{\ell \geq 0}$ est p^{k-1} si $n=p^k$, et n sinon.

Idée: nouvelle décomposition des empilements

Proposition [JN'13]
$$\widetilde{A}^{(n)}(q) = \frac{{n \brack n}_q - 2}{1 - q^n} + \text{polynôme}$$

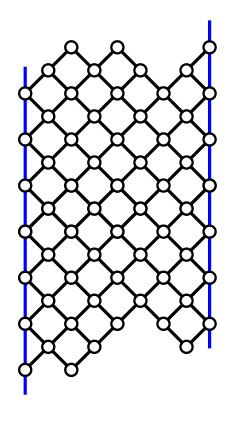


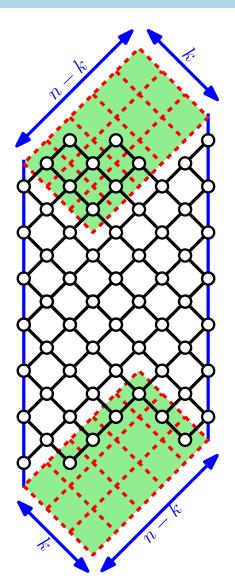
 ${N\brack m}_q\in\mathbb{N}[q]$ énumère les partitions dans une boîte $(N-m)\times m$ selon leur nombre de cases.

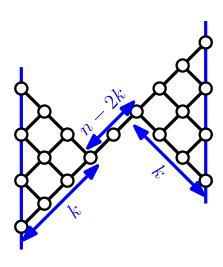
Idée: nouvelle décomposition des empilements

Proposition [JN'13]
$$\widetilde{A}^{(n)}(q) = \frac{{2n\brack n}_q - 2}{1 - q^n} + \text{polynôme}$$

"Preuve"







Pour terminer

Pour trouver la période minimale, il suffit ensuite de faire une décomposition en éléments simples de la fraction rationnelle précédente.

- Cela revient à calculer la série de Fourier de la suite ultimement périodique $(a_{\ell}^{(n)})_{\ell \geq 0}$.
- Nécessite l'évaluation $\binom{2n}{n}_{q=\exp{\frac{2im\pi}{n}}}=\binom{2\operatorname{pgcd}(n,m)}{\operatorname{pgcd}(n,m)}$.

Pour terminer

Pour trouver la période minimale, il suffit ensuite de faire une décomposition en éléments simples de la fraction rationnelle précédente.

- Cela revient à calculer la série de Fourier de la suite ultimement périodique $(a_{\ell}^{(n)})_{\ell \geq 0}$.
- Nécessite l'évaluation $\binom{2n}{n}_{q=\exp{\frac{2im\pi}{n}}}=\binom{2\operatorname{pgcd}(n,m)}{\operatorname{pgcd}(n,m)}$.

Les algèbres de Temperley-Lieb peuvent être définies pour tout système de Coxeter.

Pour tout groupe de Coxeter affine, nous pouvons généraliser les résultats énumératifs présentés + Travail en cours sur les représentations diagrammatiques de ces algèbres.

Permutations

The affine symmetric group is the set of permutations σ of \mathbb{Z} satisfying $\sigma(i+n) = \sigma(i) + n$, and $\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i$.

$$\dots, 17, -12, -14, -1, 17, -8, -10, 3, 21, -4, -6, 7, 25, 0, -2, 11, 29, 4, \dots$$

$$\sigma(1) \sigma(2) \sigma(3) \sigma(4)$$

It is generated by the transpositions τ_i for $i=0,\ldots,n-1$ which exchange i+k and i+1+k for all $k\in\mathbb{Z}$.

Permutations

The affine symmetric group is the set of permutations σ of \mathbb{Z} satisfying $\sigma(i+n) = \sigma(i) + n$, and $\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i$.

$$\dots, 17, -12, -14, -1, 17, -8, -10, 3, 21, -4, -6, 7, 25, 0, -2, 11, 29, 4, \dots$$

$$\sigma(1) \sigma(2) \sigma(3) \sigma(4)$$

It is generated by the transpositions τ_i for $i=0,\ldots,n-1$ which exchange i+k and i+1+k for all $k\in\mathbb{Z}$.

Now take a word in the e'_i representing an affine heap, and replace them by the $\tau'_i s$: which permutations do we obtain ?

Permutations

The affine symmetric group is the set of permutations σ of \mathbb{Z} satisfying $\sigma(i+n) = \sigma(i) + n$, and $\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i$.

$$\dots, 17, -12, -14, -1, 17, -8, -10, 3, 21, -4, -6, 7, 25, 0, -2, 11, 29, 4, \dots$$

$$\sigma(1) \sigma(2) \sigma(3) \sigma(4)$$

It is generated by the transpositions τ_i for $i=0,\ldots,n-1$ which exchange i+k and i+1+k for all $k\in\mathbb{Z}$.

Now take a word in the e'_i representing an affine heap, and replace them by the $\tau'_i s$: which permutations do we obtain ?

Theorem [Green '01] Affine heaps are in bijection with 321-avoiding permutations.

The number of vertices of a heap correspond to the "affine inversions" of the corresponding permutations.