

The non unfoldable self-avoiding walks

Christophe Guyeux

FEMTO-ST - DISC Department - AND Team

March 21th, 2014

The PSP problem

Introducing the foldable SAWs

The study of foldable SAWs

Conclusion

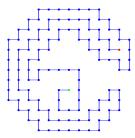
Self-Avoiding Walk

Let $d \ge 1$. A *n*-step *self-avoiding walk* (SAW) from $x \in \mathbb{Z}^d$ to $y \in \mathbb{Z}^d$ is a map $w : [0, n] \to \mathbb{Z}^d$ with:

• w(0) = x and w(n) = y,

•
$$|w(i+1) - w(i)| = 1$$
,

• $\forall i, j \in \llbracket 0, n \rrbracket$, $i \neq j \Rightarrow w(i) \neq w(j)$ (self-avoiding property).

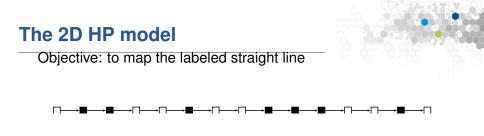


Protein Structure Prediction problem

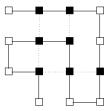
- Proteins, polymers formed by different kinds of amino acids, fold to form a specific tridimensional shape
- This geometric pattern defines the majority of functionality within an organism
- Contrary to the mapping from DNA to the amino acids sequence, the complex folding of this last sequence still remains not well-understood

Hydrophilic-hydrophobic 2D square lattice model:

- A protein conformation is a "self-avoiding walk (SAW)" on a 2D lattice (low resolution model)
- Its free energy E must be minimal
- Hydrophobic interactions dominate protein folding:
 - Protein core freeing up energy is formed by hydrophobic amino acids
 - Hydrophilic a.a. tend to move in the outer surface
- *E* depends on contacts between hydrophobic amino acids that are not contiguous in the primary structure

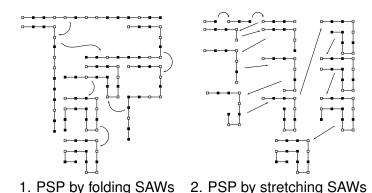


in this latter, having more black neighbors:



- Being NP-complete, the optimal conformation(s) cannot be found exactly for large *n*'s
- Conformations are thus predicted using AI tools
- Some strategies found in the literature:
 - 1. start by predicting the 2D backbone,
 - 2. then refine the obtained conformation in a 3D shape
- At least two strategies for 2D backbone prediction:
 - Method 1: iterating $\pm90^\circ$ pivot moves on the straight line
 - Method 2: stretching 1 amino acid until obtaining an *n*-steps conformation
 - ...?

Various methods for solving PSP



My first example

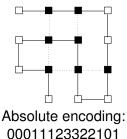
Introducing the foldable SAWs

FEMTO-ST Institute 11 / 34

Self-avoiding walk encoding

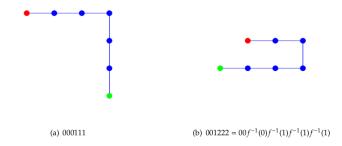
Absolute encoding of a SAW:

Movement	Encoding
Forward \rightarrow	0
Down ↓	1
$Backward \leftarrow$	2
Up ↑	3



Pivot move of $\pm 90^{\circ}$

The anticlockwise fold function is the function $f : \mathbb{Z}/4\mathbb{Z} \longrightarrow \mathbb{Z}/4\mathbb{Z}$ defined by $f(x) = x - 1 \pmod{4}$.



$A \pm 90^\circ$ pivot move applies this function on the tail of the walk

Theorem

The pivot algorithm is ergodic for self-avoiding walks on \mathbb{Z}^d provided that all axis reflections, and:

- either all 90° rotations
- or all diagonal reflections,

are given nonzero probability.

Any N-step SAW can be transformed into a straight rod by some sequence of 2N - 1 or fewer such pivots.

Madras and Sokal example

Ergodicity is lost when considering single $\pm 90^\circ$ pivot moves

The graph \mathfrak{G}_n is defined as follows:

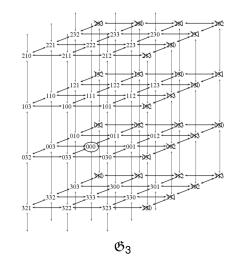
- its vertices are the *n*-step self-avoiding walks, described in absolute encoding;
- there is an edge between two vertices s_i, s_j ⇔ s_j can be obtained by one pivot move of ±90° on s_i.

Examples of \mathfrak{G}_n

10

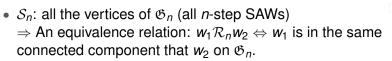
0

 \mathfrak{G}_2



Method 1 vs method 2

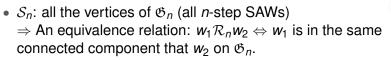
- ep SAWs)
- S_n: all the vertices of 𝔅_n (all *n*-step SAWs)
 ⇒ An equivalence relation: w₁ R_nw₂ ⇔ w₁ is in the same connected component that w₂ on 𝔅_n.
- *fSAW_n*: the connected component of the straight line 00...0 in 𝔅_n,



fSAW_n: the connected component of the straight line 00...0 in Ø_n,

We rediscovered that for some *n*, $fSAW_n \subsetneq \mathfrak{G}_n$.

- It is an obvious consequence of Madras example
- This fact is not known by some computer scientists
- ⇒ Method 1 and Method 2 do not produce the same set of conformations



fSAW_n: the connected component of the straight line 00...0 in 𝔅_n,

We rediscovered that for some *n*, $fSAW_n \subsetneq \mathfrak{G}_n$.

- It is an obvious consequence of Madras example
- This fact is not known by some computer scientists
- ⇒ Method 1 and Method 2 do not produce the same set of conformations

How evolves the ratio

$$\frac{\sharp fSAW_n}{\sharp \mathfrak{G}_n} ?$$

We introduce the following sets:

- *fSAW_n* is the equivalence class of the *n*-step straight walk, or the set of all folded SAWs.
- *fSAW*(*n*, *k*) is the set of equivalence classes of size *k* in (Ø_n, R_n).
- USAW_n is the set of equivalence classes of size 1 (𝔅_n, 𝔅_n), that is, the set of unfoldable walks.
 ⇒ Madras' walk belongs in USAW₂₂₃
- $f^1 SAW_n$ is the complement of $USAW_n$ in \mathfrak{G}_n . This is the set of SAWs on which we can apply at least one pivot move of $\pm 90^\circ$.

The study of foldable SAWs

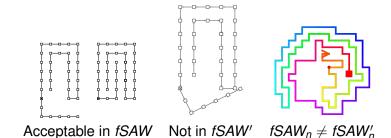
FEMTO-ST Institute 20 / 34

Current investigation techniques

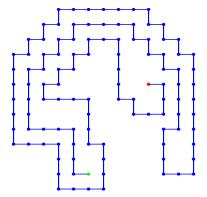
- For small *n*'s: brute force.
 - Nb of fSAW(n) = 4*Nb of fSAW(n) starting by 0 = 4*(Nb of fSAW(n) starting by 00 + 2* Nb of fSAW(n) starting by 01)
 - Stop when a polyomino appears
- For large n's: backtracking on reduced human solutions

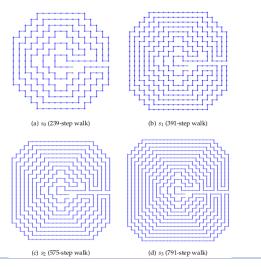
- 1. $2^{n+2} \leq \sharp fSAW_n \leq 4 \times 3^n$
- 2. $\forall n \leq 22$, $fSAW_n = \mathfrak{G}_n$ ($n \leq 11$ in triangular lattice)
- 3. $fSAW_{108} \subsetneq \mathfrak{G}_{108}$.
 - let ν_n the smallest $n \ge 2$ such that $USAW_n \ne \emptyset$. Then $23 \le \nu_n \le 108$.
 - We can obtain all $\mathfrak{G}_n, n \leq 22$ by increasing the number of cranks
- 4. $\forall n \leq 28, f^1 SAW_n = \mathfrak{G}_n$, while $f^1 SAW_{108} \subsetneq \mathfrak{G}_{108}$.
- 5. $\exists k > 2$ such that fSAW(n, k) is nonempty.
- 6. The diameter of fSAW(n) is equal to 2n.

fSAW_n is not fSAW'_n



Current smallest (108-step) USAW





Cardinalities of subsets of SAWs

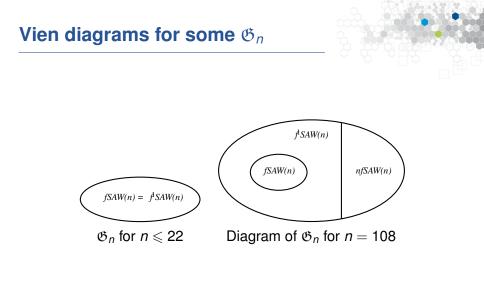
n	‡©_n	$#f^1SAW(n)$	$\sharp USAW(n) = \sharp \overline{f^1 SAW(n)}$	#fSAW(n)	
1	4	4	0	4	
2	12	12	0	12	
3	36	36	0	36	
4	100	100	0	100	
5	284	284	0	284	
6	780	780	0	780	
7	2172	2172	0	2172	
8	5916	5916	0	5916	
9	16268	16268	0	16268	
10	44100	44100	0	44100	
11	120292	120292	0	120292	
12	324932	324932	0	324932	
13	881500	881500	0	881500	
14	2374444	2374444	0	2374444	
15	6416596	6416596	0	6416596	
16	17245332	17245332	0	17245332	
17	46466676	46466676	0	46466676	
18	124658732	124658732	0	124658732	
19	335116620	335116620	0	335116620	
20	897697164	897697164	0	897697164	
21	2408806028	2408806028	0	2408806028	
22	6444560484	6444560484	0	6444560484	
23	17266613812	17266613812	0	?	
24	46146397316	46146397316	0	?	
25	123481354908	123481354908	0	?	
26	329712786220	329712786220	0	?	
27	881317491628	881317491628	0	?	
28	2351378582244	2351378582244	0	?	
-29	6279396229332	?	?	? .	
30	16741957935348	?	?	?	
31	44673816630956	?	? FEN	ITO-ST Institute	26
			•		

Cardinalities of	of subsets	of SAWs
------------------	------------	---------

107	?	?	≥ 3	?	
108	?	?	≥ 1	?	
111	?		≥ 5	?	
112	?	? ?	≥ 1	?	
113	?	?	≥ 2	?	
114	?	? ?		?	
115	?	?	≥ 5	?	
116	?	? ?	≥ 3	?	
117	?		≥ 4		
118	?	? ? ?	≥ 2	?	
119	?	?	$\stackrel{>}{\geqslant} \stackrel{2}{\underset{\geq}{\geqslant}} \stackrel{2}{4}$?	
121	?			?	
122	?	? ? ?	≥ 5	?	
123	?	?	≥ 1	?	
132	?	?	≥ 7	?	
133	?	?	≥ 6	?	
134	?	?	≥ 95	?	
$135 \\ 136$?	?	≥ 165	?	
130	?		≥ 40 ≥ 50	?	
138	?	?	≥ 175	2	
139	?	?	≥ 179	?	
140	?		≥ 66	?	
141	?	? ?	≥ 119	?	
142	?	?	≥ 322	?	
143	?		≥ 476	?	
144	?	?	≥ 8	?	
145	?	?	$\geqslant 18$ $\geqslant 54$?	
146	?	? ?	≥ 54	?	
235	?	?	≥ 1	?	
239	?	?	≥ 1	?	
391	?	?		MTO-\$T Institute	27 / 34
575	?	?	≥ 1	?	
				-	

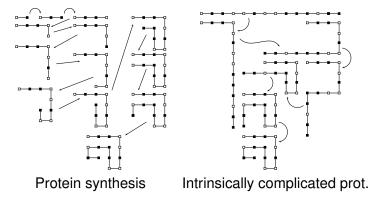
Case of triangular SAWs

n	saw(n)	$\sharp f^1 SAW(n)$
0	1	1
1	6	6
2	30	30
3	138	138
4	618	618
5	2730	2730
6	11946	11946
7	51882	51882
8	224130	224130
9	964134	964134
10	4133166	4133166
11	17668938	17668938
12	75355206	
13	320734686	
14	1362791250	
15	5781765582	
16	24497330322	
17	103673967882	
18	438296739594	



Conclusion

All walks are interesting ?



- 1. Did these walks constitute an exponentially small subset of SAWs ?
- 2. The PSP problem still remains NP-complete in $fSAW_n$?
- For any dimension *d*, do we have the existence of *n* ∈ N* such that *fSAW^d_n* ⊂ 𝔅^d_n ?
- fSAW₂² and fSAW₃² are Hamiltonian graphs, but they are not Eulerian. What about fSAW_n^k ?
- 5. is there an unfoldable walk in \mathbb{Z}^3 ?
- 6. Are the connected components of \mathfrak{G}_n^d convex ?

7. ...

- Monte-Carlo approach ?
- Genetic algorithm approach ?
- Dynamic programming ?
- Pivot algorithm ?
- Forbidden patterns ?

Thank you! Any question/suggestion/idea ?

christophe.guyeux@univ-fcomte.fr

FEMTO-ST Institute 34 / 34