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March 17, 2014

Joint Work with Philippe Duchon



Overview

Introduction

Update Algorithms

Deletion Algorithms
Insertion Algorithms

Conclusion

Romaric Duvignau Local Update Algorithms for Random Graphs 0 / 11



General Setting

Context and Motivations

Peer-to-Peer Network (structure maintained locally)

Insertion and Deletion : dependence on the update sequence

Malicious update sequence may perturb the network

Difficulty in designing/analysing update algorithms

Our suggestion : maintain exactly a given distribution for the
network

Distribution-preserving update algorithms

The network is modelled as a random graph G

For each possible vertex set V , G should follow a given target
distribution µV , which is preserved through updates :

Insertion: If G ∼ µV and u 6∈ V then I(G , u) ∼ µV∪{u}
Deletion: If G ∼ µV and u ∈ V then D(G , u) ∼ µV\{u}

No probabilistic model for update sequences
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Our graph model

k-out graphs

Simple directed graphs with vertices of outdegree exactly k

Good properties (low distances, etc) under the uniform
distribution νV : All N+

G (v) are independent and each N+
G (v)

is a uniform k-subset of V − v

Some properties of uniform n-vertices k-out graphs

Indegrees follow the Binomial(n − 1, k
n−1) distribution

Connected with asymptotic probability 1

Our goal: Local update algorithms

Given a uniform k-out graph G over V :

Deletion of u ∈ V: build a uniform k-out graph over V \ {u}
Insertion of u 6∈ V: build a uniform k-out graph over V ∪{u}
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Our decentralized and cost model

Decentralized model

Only use local knowledge and the size of the graph

Access to a global primitive RandomVertex() that returns a
uniform node of the vertex set

RandomVertex(): RV for short

Costly primitive

Cost of an update algorithm = expected number of calls to RV

Our algorithms

Minimize the symmetric difference between the input G and
the output G ′

Constant expected time
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Our results (best algorithms)

Optimal local update algorithms:

Deletion algorithm

o(1) calls to RV

Insertion algorithm

k calls to RV
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Deletion Algorithm: Simple Algorithm

Deletion of vertex 2

0

12

34

5

The simple solution

Randomly redirect loose edges,
avoiding incompatible choices

Asymptotic cost k

uRVA RVA
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Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5

Suggestions must be independent, and can be made so
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Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5

Try 0
Try 1

Suggestions must be independent, and can be made so
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Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5
RV

Suggestions must be independent, and can be made so

Second algorithm

Use N+(u) to save calls to RV, while preserving independence
between suggestions

Asymptotic Cost: k ·
(

e−k · kk

k!

)
'
√

k
2π
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Deletion Algorithm: what about re-using N−(u) ?

Best Algorithm: the typical case

u

P1

P2

P3

P4

S3

S2

S1
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Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1
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Deletion Algorithm: how to redirect loose edges ?
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Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2
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n−1−k

uPi

Pi+1

Pi+1 6∈ N+
G (Pi )

uPi

Pi+1

RVA

Pi+1 ∈ N+
G (Pi )

uPL

S3

S2
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Total cost is o(1).
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Insertion Algorithm: Simple insertion

Insertion of vertex 5

0

12

34

5

Simple Insertion Algorithm

Draw k distinct vertices as successors, using RV

Draw X ∼ Binomial(n, k/n), then pick X distinct random
vertices as predecessors, and steal one edge from each of them

Asymptotic cost: k + k
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Insertion Algorithm: Using similar ideas as deletion

Best insertion algorithm

Build first the predecessors of u by:

Choosing the number of predecessors using Binomial(n, k/n)
Starting from a call to RV

Using the lost vertex of the redirected edge to save some calls
to RV

Last predecessor is used to produce a first successor for u

Then choose the k − 1 other successors of u using RV

Cost and optimality

Asymptotic Cost: k

Optimal asymptotic cost, among bounded expected time
algorithms
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Conclusion

Distribution-preserving algorithms and k-out graphs

Precise definition of distribution-preserving algorithms

Several insertion and deletion algorithms for k-out graphs

The most efficient algorithms are asymptotically optimal

Extension to more complex models

Some fixed distribution for vertex out-degrees

Undirected edges: e.g. regular graphs (difficult) or pairing
models (easier)

Geometric models: distribution of the network depends on
some point set V

Connected works

Possibility to maintain k-out graphs without knowing the size

Expensive cost: difficult to simulate Binomial(n, k/n)
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Thank you

Introduction

Update Algorithms
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Conclusion

Thank you for your attention
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Connected works

Without knowledge of the size ?

Our algorithms need to simulate Bernoulli(a/(n − b)) and
Binomial(n, k/n) using only RV

Bernoulli(a/(n− b)) can be simulated by one call to RV, using
two sets A,B ⊂ V such that |A| = a, |B| = b and A ∩ B = ∅
With this simulation, all deletion/insertion algorithms
presented here have the same cost: k for deletion, 2k + the
cost of simulating the Binomial for insertion

Binomial(n, k/n) is known to be simulable but actually only in
O(n) expected calls to RV

Special cases

Binomial(n, 1/n) can be simulated in 3.2 calls to RV
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Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

RV

Del2 Algorithm

For 1 ≤ i ≤ k , suggest to Pi :

With probability i−1
n−1 , a uniform vertex of {P1, . . . ,Pi−1}

With the remaining probability, Si

For any further predecessors and unsuccessful suggestions, use
RV instead
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Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

RV

Cost

Total asymptotic cost : k ·
(

e−k · kk

k!

)
'
√

k
2π
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Deletion Algorithm: Del2

Del2 Schema
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P1 P2 P3 P4

S1 S2 S3
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Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

1
1

n−1 1− 1
n−1

1
n−1 1

n−1
1− 2

n−1
RVA
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Deletion Algorithm: Del3 algorithm

Del3 Algorithm

Replace u in Pi ’s neighbourhood by (in order):
1 One of the j ≤ i − 1 acceptable and already processed

predecessors, with probability j/(n − 1− k)
2 Pi+1, if the edge (Pi ,Pi+1) does not already exist
3 Some call to RV avoiding the j acceptable predecessors and

Pi ’s successors, if (2) fails

For the last predecessor, replace u by one of u’s successors
(then some call to RV if the suggestion is not accepted)

Cost

With probability 1−O( 1n ), we do not call RV at all

Total cost is o(1)
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Insertion Algorithm: using similar ideas as Del3

Ins2 Schema

u

P1

P2

P3

P4

RV

S1

S2

RV

S3

RV
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Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L
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Insertion Algorithm: Cost and optimality of Ins2 algorithm

Cost of Ins2 Algorithm

One call to RV is needed to start the algorithm

With probability 1−O(1/n), no calls to RV is needed in order
to find Pi+1 and k − 1 calls are enough for the last step

The asymptotic total cost is then 1 + (k − 1)

Optimality (sketch) of Ins2 Algorithm

By counting possible graphs, we get that k log2(n) +O(1)
new bits of information are needed to properly insert a vertex

Each call to RV gives log2(n) new bits of information

Since other sources of randomness are available, one call to
RV may be sufficient but results in a O(n) algorithm

With asymptotic constant expected time complexity, k calls
are needed
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Insertion Algorithm: Ins2 algorithm

Ins2 Algorithm

Choose L ∼ Binomial(n, k/n), then build a L-subset
P = P1,P2, . . .PL over V for u’s predecessors

P1 is obtained through RV

Then, for each 1 ≤ i ≤ L: one of Pi ’s outgoing edge is chosen
to be redirected to u, and we keep track of Di the deleted
destination, then Pi+1 is obtained by (in order):

1 One of the j ≤ k − 1 acceptable vertices among N+(Pi ), with
probability j/(n − i)

2 Di , if it is acceptable
3 Some call to RV avoiding P1, . . . ,Pi and N+

G (Pi ), if (2) fails

Once all predecessors have been chosen, the first successor for
u is obtained as follows:

1 One vertex among N+(PL) \ {DL} ∪ {PL} is chosen uniformly
with probability k/n

2 “DL” is used otherwise with the remaining probability

Finally, the remaining k − 1 successors are obtained using RV
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Distributed Model of computation

Local features

Deletion : need only to examine the underlying undirected
graph at distance 2 from u

Insertions : need to examine neighborhoods of vertices
returned by RV or along short paths

Possible implementation in a decentralized message-passing
model

Assumptions : Knowing a vertex identity is sufficient to
contact it and we have access to the RV primitive

Out of the scope of this work

Unreliable network

Concurrency
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