
Local Update Algorithms for Random Graphs

Romaric Duvignau

Journées ALÉA 2014

March 17, 2014

Joint Work with Philippe Duchon

Overview

Introduction

Update Algorithms

Deletion Algorithms
Insertion Algorithms

Conclusion

Romaric Duvignau Local Update Algorithms for Random Graphs 0 / 11

General Setting

Context and Motivations

Peer-to-Peer Network (structure maintained locally)

Insertion and Deletion : dependence on the update sequence

Malicious update sequence may perturb the network

Difficulty in designing/analysing update algorithms

Our suggestion : maintain exactly a given distribution for the
network

Distribution-preserving update algorithms

The network is modelled as a random graph G

For each possible vertex set V , G should follow a given target
distribution µV , which is preserved through updates :

Insertion: If G ∼ µV and u 6∈ V then I(G , u) ∼ µV∪{u}
Deletion: If G ∼ µV and u ∈ V then D(G , u) ∼ µV\{u}

No probabilistic model for update sequences

Romaric Duvignau Local Update Algorithms for Random Graphs 1 / 11

General Setting

Context and Motivations

Peer-to-Peer Network (structure maintained locally)

Insertion and Deletion : dependence on the update sequence

Malicious update sequence may perturb the network

Difficulty in designing/analysing update algorithms

Our suggestion : maintain exactly a given distribution for the
network

Distribution-preserving update algorithms

The network is modelled as a random graph G

For each possible vertex set V , G should follow a given target
distribution µV , which is preserved through updates :

Insertion: If G ∼ µV and u 6∈ V then I(G , u) ∼ µV∪{u}
Deletion: If G ∼ µV and u ∈ V then D(G , u) ∼ µV\{u}

No probabilistic model for update sequences

Romaric Duvignau Local Update Algorithms for Random Graphs 1 / 11

Our graph model

k-out graphs

Simple directed graphs with vertices of outdegree exactly k

Good properties (low distances, etc) under the uniform
distribution νV : All N+

G (v) are independent and each N+
G (v)

is a uniform k-subset of V − v

Some properties of uniform n-vertices k-out graphs

Indegrees follow the Binomial(n − 1, k
n−1) distribution

Connected with asymptotic probability 1

Our goal: Local update algorithms

Given a uniform k-out graph G over V :

Deletion of u ∈ V: build a uniform k-out graph over V \ {u}
Insertion of u 6∈ V: build a uniform k-out graph over V ∪{u}

Romaric Duvignau Local Update Algorithms for Random Graphs 2 / 11

Our graph model

k-out graphs

Simple directed graphs with vertices of outdegree exactly k

Good properties (low distances, etc) under the uniform
distribution νV : All N+

G (v) are independent and each N+
G (v)

is a uniform k-subset of V − v

Some properties of uniform n-vertices k-out graphs

Indegrees follow the Binomial(n − 1, k
n−1) distribution

Connected with asymptotic probability 1

Our goal: Local update algorithms

Given a uniform k-out graph G over V :

Deletion of u ∈ V: build a uniform k-out graph over V \ {u}
Insertion of u 6∈ V: build a uniform k-out graph over V ∪{u}

Romaric Duvignau Local Update Algorithms for Random Graphs 2 / 11

Our graph model

k-out graphs

Simple directed graphs with vertices of outdegree exactly k

Good properties (low distances, etc) under the uniform
distribution νV : All N+

G (v) are independent and each N+
G (v)

is a uniform k-subset of V − v

Some properties of uniform n-vertices k-out graphs

Indegrees follow the Binomial(n − 1, k
n−1) distribution

Connected with asymptotic probability 1

Our goal: Local update algorithms

Given a uniform k-out graph G over V :

Deletion of u ∈ V: build a uniform k-out graph over V \ {u}
Insertion of u 6∈ V: build a uniform k-out graph over V ∪{u}

Romaric Duvignau Local Update Algorithms for Random Graphs 2 / 11

Our decentralized and cost model

Decentralized model

Only use local knowledge and the size of the graph

Access to a global primitive RandomVertex() that returns a
uniform node of the vertex set

RandomVertex(): RV for short

Costly primitive

Cost of an update algorithm = expected number of calls to RV

Our algorithms

Minimize the symmetric difference between the input G and
the output G ′

Constant expected time

Romaric Duvignau Local Update Algorithms for Random Graphs 3 / 11

Our decentralized and cost model

Decentralized model

Only use local knowledge and the size of the graph

Access to a global primitive RandomVertex() that returns a
uniform node of the vertex set

RandomVertex(): RV for short

Costly primitive

Cost of an update algorithm = expected number of calls to RV

Our algorithms

Minimize the symmetric difference between the input G and
the output G ′

Constant expected time

Romaric Duvignau Local Update Algorithms for Random Graphs 3 / 11

Our decentralized and cost model

Decentralized model

Only use local knowledge and the size of the graph

Access to a global primitive RandomVertex() that returns a
uniform node of the vertex set

RandomVertex(): RV for short

Costly primitive

Cost of an update algorithm = expected number of calls to RV

Our algorithms

Minimize the symmetric difference between the input G and
the output G ′

Constant expected time

Romaric Duvignau Local Update Algorithms for Random Graphs 3 / 11

Our results (best algorithms)

Optimal local update algorithms:

Deletion algorithm

o(1) calls to RV

Insertion algorithm

k calls to RV

Romaric Duvignau Local Update Algorithms for Random Graphs 4 / 11

Overview

Introduction

Update Algorithms

Deletion Algorithms
Insertion Algorithms

Conclusion

Romaric Duvignau Local Update Algorithms for Random Graphs 4 / 11

Deletion Algorithm: Simple Algorithm

Deletion of vertex 2

0

12

34

5

The simple solution

Randomly redirect loose edges,
avoiding incompatible choices

Asymptotic cost k

uRVA RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

Deletion Algorithm: Simple Algorithm

Deletion of vertex 2

0

12

34

5

The simple solution

Randomly redirect loose edges,
avoiding incompatible choices

Asymptotic cost k

uRVA RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

Deletion Algorithm: Simple Algorithm

Deletion of vertex 2

0

12

34

5

The simple solution

Randomly redirect loose edges,
avoiding incompatible choices

Asymptotic cost k

uRVA RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

Deletion Algorithm: Simple Algorithm

Deletion of vertex 2

0

12

34

5

The simple solution

Randomly redirect loose edges,
avoiding incompatible choices

Asymptotic cost k

uRVA RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

Deletion Algorithm: Simple Algorithm

Deletion of vertex 2

0

12

34

5

RV

RV

RV

The simple solution

Randomly redirect loose edges,
avoiding incompatible choices

Asymptotic cost k

uRVA RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

Deletion Algorithm: Simple Algorithm

Deletion of vertex 2

0

12

34

5

RV

RV

RV

The simple solution

Randomly redirect loose edges,
avoiding incompatible choices

Asymptotic cost k

uRVA RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5

Suggestions must be independent, and can be made so

Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5

Suggestions must be independent, and can be made so

Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5

Try 0
Try 1

Suggestions must be independent, and can be made so

Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5
RV

Suggestions must be independent, and can be made so

Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5
RV

Suggestions must be independent, and can be made so

Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

Deletion Algorithm: A better algorithm ?

Deletion of vertex 2

0

12

34

5
RV

Suggestions must be independent, and can be made so

Second algorithm

Use N+(u) to save calls to RV, while preserving independence
between suggestions

Asymptotic Cost: k ·
(

e−k · kk

k!

)
'
√

k
2π

Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

Deletion Algorithm: what about re-using N−(u) ?

Best Algorithm: the typical case

u

P1

P2

P3

P4

S3

S2

S1

Romaric Duvignau Local Update Algorithms for Random Graphs 7 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

1
n−1−k

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

1
n−1−k

uPi

Pi+1

Pi+1 6∈ N+
G (Pi)

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

1
n−1−k

uPi

Pi+1

Pi+1 6∈ N+
G (Pi)

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

1
n−1−k

uPi

Pi+1

Pi+1 6∈ N+
G (Pi)

uPi

Pi+1

Pi+1 6∈ N+
G (Pi)

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

1
n−1−k

uPi

Pi+1

Pi+1 6∈ N+
G (Pi)

uPi

Pi+1

RVA

Pi+1 ∈ N+
G (Pi)

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

1
n−1−k uPi

Pi+1

Pi+1 6∈ N+
G (Pi)

uPi

Pi+1

RVA

Pi+1 ∈ N+
G (Pi)

uPL

S3

S2

S1

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

1
n−1−k uPi

Pi+1

Pi+1 6∈ N+
G (Pi)

uPi

Pi+1

RVA

Pi+1 ∈ N+
G (Pi)

uPL

S3

S2

S1

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Deletion Algorithm: how to redirect loose edges ?

L = |N−G (u)| and 1 ≤ i ≤ L− 1

uPi

P2 Pi−1

Pi−1

Pi−2

...

P2

P1

1
n−1−k

uPi

Pi+1

Pi+1 6∈ N+
G (Pi)

uPi

Pi+1

RVA

Pi+1 ∈ N+
G (Pi)

uPL

S3

S2

S1

Total cost is o(1).

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Overview

Introduction

Update Algorithms

Deletion Algorithms
Insertion Algorithms

Conclusion

Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Insertion Algorithm: Simple insertion

Insertion of vertex 5

0

12

34

5

Simple Insertion Algorithm

Draw k distinct vertices as successors, using RV

Draw X ∼ Binomial(n, k/n), then pick X distinct random
vertices as predecessors, and steal one edge from each of them

Asymptotic cost: k + k

Romaric Duvignau Local Update Algorithms for Random Graphs 9 / 11

Insertion Algorithm: Simple insertion

Insertion of vertex 5

0

12

34

5

Simple Insertion Algorithm

Draw k distinct vertices as successors, using RV

Draw X ∼ Binomial(n, k/n), then pick X distinct random
vertices as predecessors, and steal one edge from each of them

Asymptotic cost: k + k

Romaric Duvignau Local Update Algorithms for Random Graphs 9 / 11

Insertion Algorithm: Simple insertion

Insertion of vertex 5

0

12

34

5

Simple Insertion Algorithm

Draw k distinct vertices as successors, using RV

Draw X ∼ Binomial(n, k/n), then pick X distinct random
vertices as predecessors, and steal one edge from each of them

Asymptotic cost: k + k

Romaric Duvignau Local Update Algorithms for Random Graphs 9 / 11

Insertion Algorithm: Simple insertion

Insertion of vertex 5

0

12

34

5

Simple Insertion Algorithm

Draw k distinct vertices as successors, using RV

Draw X ∼ Binomial(n, k/n), then pick X distinct random
vertices as predecessors, and steal one edge from each of them

Asymptotic cost: k + k

Romaric Duvignau Local Update Algorithms for Random Graphs 9 / 11

Insertion Algorithm: Using similar ideas as deletion

Best insertion algorithm

Build first the predecessors of u by:

Choosing the number of predecessors using Binomial(n, k/n)
Starting from a call to RV

Using the lost vertex of the redirected edge to save some calls
to RV

Last predecessor is used to produce a first successor for u

Then choose the k − 1 other successors of u using RV

Cost and optimality

Asymptotic Cost: k

Optimal asymptotic cost, among bounded expected time
algorithms

Romaric Duvignau Local Update Algorithms for Random Graphs 10 / 11

Overview

Introduction

Update Algorithms

Deletion Algorithms
Insertion Algorithms

Conclusion

Romaric Duvignau Local Update Algorithms for Random Graphs 10 / 11

Conclusion

Distribution-preserving algorithms and k-out graphs

Precise definition of distribution-preserving algorithms

Several insertion and deletion algorithms for k-out graphs

The most efficient algorithms are asymptotically optimal

Extension to more complex models

Some fixed distribution for vertex out-degrees

Undirected edges: e.g. regular graphs (difficult) or pairing
models (easier)

Geometric models: distribution of the network depends on
some point set V

Connected works

Possibility to maintain k-out graphs without knowing the size

Expensive cost: difficult to simulate Binomial(n, k/n)

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Thank you

Introduction

Update Algorithms

Deletion Algorithms
Insertion Algorithms

Conclusion

Thank you for your attention

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Connected works

Without knowledge of the size ?

Our algorithms need to simulate Bernoulli(a/(n − b)) and
Binomial(n, k/n) using only RV

Bernoulli(a/(n− b)) can be simulated by one call to RV, using
two sets A,B ⊂ V such that |A| = a, |B| = b and A ∩ B = ∅
With this simulation, all deletion/insertion algorithms
presented here have the same cost: k for deletion, 2k + the
cost of simulating the Binomial for insertion

Binomial(n, k/n) is known to be simulable but actually only in
O(n) expected calls to RV

Special cases

Binomial(n, 1/n) can be simulated in 3.2 calls to RV

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

RV

Del2 Algorithm

For 1 ≤ i ≤ k , suggest to Pi :

With probability i−1
n−1 , a uniform vertex of {P1, . . . ,Pi−1}

With the remaining probability, Si

For any further predecessors and unsuccessful suggestions, use
RV instead

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

RV

Cost

Total asymptotic cost : k ·
(

e−k · kk

k!

)
'
√

k
2π

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

1
1

n−1 1− 1
n−1

1
n−1 1

n−1
1− 2

n−1
RVA

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Deletion Algorithm: Del2

Del2 Schema

u

P1 P2 P3 P4

S1 S2 S3

1
1

n−1 1− 1
n−1

1
n−1 1

n−1
1− 2

n−1
RVA

Cost

Total asymptotic cost : k ·
(

e−k · kk

k!

)
'
√

k
2π

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Deletion Algorithm: Del3 algorithm

Del3 Algorithm

Replace u in Pi ’s neighbourhood by (in order):
1 One of the j ≤ i − 1 acceptable and already processed

predecessors, with probability j/(n − 1− k)
2 Pi+1, if the edge (Pi ,Pi+1) does not already exist
3 Some call to RV avoiding the j acceptable predecessors and

Pi ’s successors, if (2) fails

For the last predecessor, replace u by one of u’s successors
(then some call to RV if the suggestion is not accepted)

Cost

With probability 1−O(1n), we do not call RV at all

Total cost is o(1)

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Deletion Algorithm: Del3 algorithm

Del3 Algorithm

Replace u in Pi ’s neighbourhood by (in order):
1 One of the j ≤ i − 1 acceptable and already processed

predecessors, with probability j/(n − 1− k)
2 Pi+1, if the edge (Pi ,Pi+1) does not already exist
3 Some call to RV avoiding the j acceptable predecessors and

Pi ’s successors, if (2) fails

For the last predecessor, replace u by one of u’s successors
(then some call to RV if the suggestion is not accepted)

Cost

With probability 1−O(1n), we do not call RV at all

Total cost is o(1)

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: using similar ideas as Del3

Ins2 Schema

u

P1

P2

P3

P4

RV

S1

S2

RV

S3

RV

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

uPi

Di

Di 6∈ {P1, . . . ,Pi−1}

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

uPi

Di

Di 6∈ {P1, . . . ,Pi−1}

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

uPi

Di RVA

Di 6∈ {P1, . . . ,Pi−1}

Di ∈ {P1, . . . ,Pi−1}

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

uPi

Di RVA

Di 6∈ {P1, . . . ,Pi−1}

Di ∈ {P1, . . . ,Pi−1}

uPL

DL

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: how to build N−G ′(u)

How to chose Pi+1 ?

uPi

DiP2

1
n−i

Pi−1

...

P2

P1 RV

uPi

Di RVA

Di 6∈ {P1, . . . ,Pi−1}

Di ∈ {P1, . . . ,Pi−1}

uPL

DL

k
n

1− k
n

L = |N−G (u)| ∼ Binomial(n, k/n) and 2 ≤ i ≤ L

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: Cost and optimality of Ins2 algorithm

Cost of Ins2 Algorithm

One call to RV is needed to start the algorithm

With probability 1−O(1/n), no calls to RV is needed in order
to find Pi+1 and k − 1 calls are enough for the last step

The asymptotic total cost is then 1 + (k − 1)

Optimality (sketch) of Ins2 Algorithm

By counting possible graphs, we get that k log2(n) +O(1)
new bits of information are needed to properly insert a vertex

Each call to RV gives log2(n) new bits of information

Since other sources of randomness are available, one call to
RV may be sufficient but results in a O(n) algorithm

With asymptotic constant expected time complexity, k calls
are needed

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: Cost and optimality of Ins2 algorithm

Cost of Ins2 Algorithm

One call to RV is needed to start the algorithm

With probability 1−O(1/n), no calls to RV is needed in order
to find Pi+1 and k − 1 calls are enough for the last step

The asymptotic total cost is then 1 + (k − 1)

Optimality (sketch) of Ins2 Algorithm

By counting possible graphs, we get that k log2(n) +O(1)
new bits of information are needed to properly insert a vertex

Each call to RV gives log2(n) new bits of information

Since other sources of randomness are available, one call to
RV may be sufficient but results in a O(n) algorithm

With asymptotic constant expected time complexity, k calls
are needed

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Insertion Algorithm: Ins2 algorithm

Ins2 Algorithm

Choose L ∼ Binomial(n, k/n), then build a L-subset
P = P1,P2, . . .PL over V for u’s predecessors

P1 is obtained through RV

Then, for each 1 ≤ i ≤ L: one of Pi ’s outgoing edge is chosen
to be redirected to u, and we keep track of Di the deleted
destination, then Pi+1 is obtained by (in order):

1 One of the j ≤ k − 1 acceptable vertices among N+(Pi), with
probability j/(n − i)

2 Di , if it is acceptable
3 Some call to RV avoiding P1, . . . ,Pi and N+

G (Pi), if (2) fails

Once all predecessors have been chosen, the first successor for
u is obtained as follows:

1 One vertex among N+(PL) \ {DL} ∪ {PL} is chosen uniformly
with probability k/n

2 “DL” is used otherwise with the remaining probability

Finally, the remaining k − 1 successors are obtained using RV

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

Distributed Model of computation

Local features

Deletion : need only to examine the underlying undirected
graph at distance 2 from u

Insertions : need to examine neighborhoods of vertices
returned by RV or along short paths

Possible implementation in a decentralized message-passing
model

Assumptions : Knowing a vertex identity is sufficient to
contact it and we have access to the RV primitive

Out of the scope of this work

Unreliable network

Concurrency

Romaric Duvignau Local Update Algorithms for Random Graphs 11 / 11

