Local Update Algorithms for Random Graphs

Romaric Duvignau

Journées ALÉA 2014

March 17, 2014

Joint Work with Philippe Duchon

Introduction

- Update Algorithms
 - Deletion Algorithms
 - Insertion Algorithms
- Conclusion

General Setting

Context and Motivations

- Peer-to-Peer Network (structure maintained locally)
- Insertion and Deletion : dependence on the update sequence
- Malicious update sequence may perturb the network
- Difficulty in designing/analysing update algorithms
- Our suggestion : maintain **exactly** a given distribution for the network

General Setting

Context and Motivations

- Peer-to-Peer Network (structure maintained locally)
- Insertion and Deletion : dependence on the update sequence
- Malicious update sequence may perturb the network
- Difficulty in designing/analysing update algorithms
- Our suggestion : maintain **exactly** a given distribution for the network

Distribution-preserving update algorithms

- The network is modelled as a random graph G
- For each possible vertex set V, G should follow a given target distribution μ_V , which is *preserved* through updates :
 - Insertion: If $G \sim \mu_V$ and $u \notin V$ then $\mathcal{I}(G, u) \sim \mu_{V \cup \{u\}}$
 - **Deletion**: If $G \sim \mu_V$ and $u \in V$ then $\mathcal{D}(G, u) \sim \mu_{V \setminus \{u\}}$
- No probabilistic model for update sequences

Our graph model

k-out graphs

- Simple directed graphs with vertices of outdegree exactly k
- Good properties (low distances, etc) under the **uniform distribution** ν_V : All $N_G^+(v)$ are independent and each $N_G^+(v)$ is a uniform k-subset of V - v

Our graph model

k-out graphs

- Simple directed graphs with vertices of outdegree exactly k
- Good properties (low distances, etc) under the **uniform distribution** ν_V : All $N_G^+(v)$ are independent and each $N_G^+(v)$ is a uniform k-subset of V - v

Some properties of uniform *n*-vertices *k*-out graphs

- Indegrees follow the Binomial $(n-1, \frac{k}{n-1})$ distribution
- Connected with asymptotic probability 1

Our graph model

k-out graphs

- Simple directed graphs with vertices of outdegree exactly k
- Good properties (low distances, etc) under the **uniform distribution** ν_V : All $N_G^+(v)$ are independent and each $N_G^+(v)$ is a uniform k-subset of V - v

Some properties of uniform *n*-vertices *k*-out graphs

- Indegrees follow the Binomial $(n-1, \frac{k}{n-1})$ distribution
- Connected with asymptotic probability 1

Our goal: Local update algorithms

Given a uniform k-out graph G over V:

- Deletion of $\mathbf{u} \in \mathbf{V}$: build a uniform k-out graph over $V \setminus \{u\}$
- Insertion of $\mathbf{u} \notin \mathbf{V}$: build a uniform k-out graph over $V \cup \{u\}$

Decentralized model

- Only use *local* knowledge and the *size* of the graph
- Access to a global primitive RandomVertex() that returns a uniform node of the vertex set

Decentralized model

- Only use *local* knowledge and the *size* of the graph
- Access to a global primitive RandomVertex() that returns a uniform node of the vertex set

RandomVertex(): RV for short

- Costly primitive
- Cost of an update algorithm = expected number of calls to RV

Decentralized model

- Only use *local* knowledge and the *size* of the graph
- Access to a global primitive RandomVertex() that returns a uniform node of the vertex set

RandomVertex(): RV for short

- Costly primitive
- Cost of an update algorithm = expected number of calls to RV

Our algorithms

- Minimize the symmetric difference between the input G and the output G'
- Constant expected time

Optimal local update algorithms:

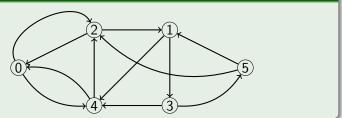
Deletion algorithm

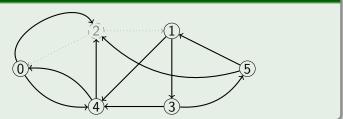
• o(1) calls to RV

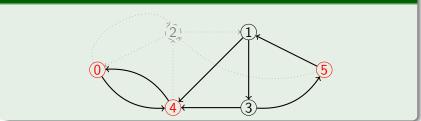
Insertion algorithm

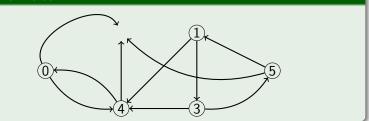
• k calls to RV

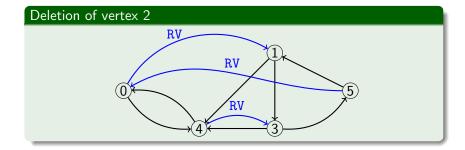
- Introduction
- Update Algorithms
 - Deletion Algorithms
 - Insertion Algorithms
- Conclusion

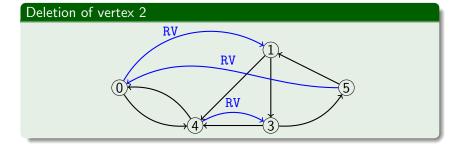






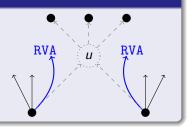


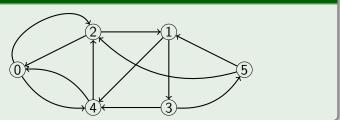


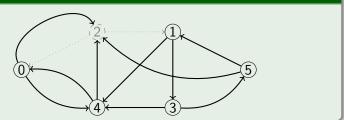


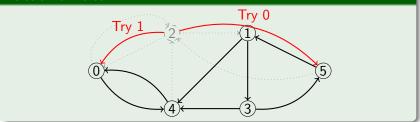
The *simple* solution

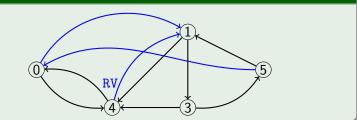
- Randomly redirect loose edges, avoiding incompatible choices
- Asymptotic cost k

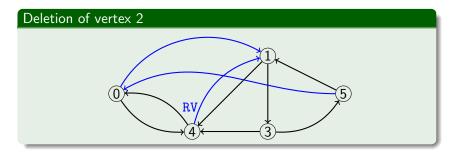




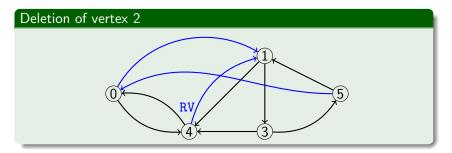








• Suggestions must be independent, and can be made so



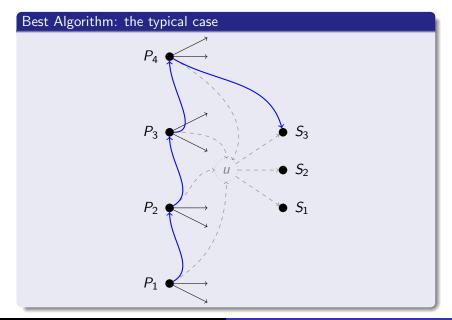
• Suggestions must be independent, and can be made so

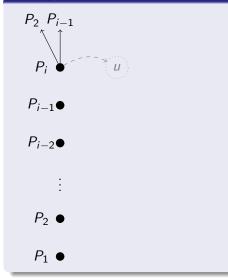
Second algorithm

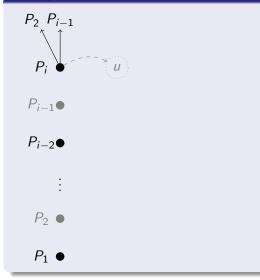
• Use $N^+(u)$ to save calls to RV, while preserving independence between suggestions

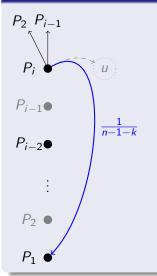
• Asymptotic Cost:
$$k \cdot \left(e^{-k} \cdot rac{k^k}{k!}\right) \simeq \sqrt{rac{k}{2\pi}}$$

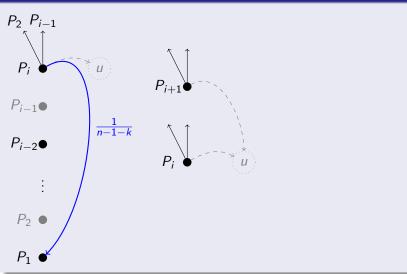
Deletion Algorithm: what about re-using $N^{-}(u)$?

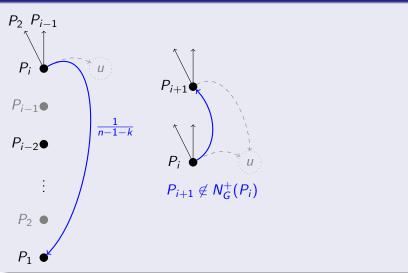


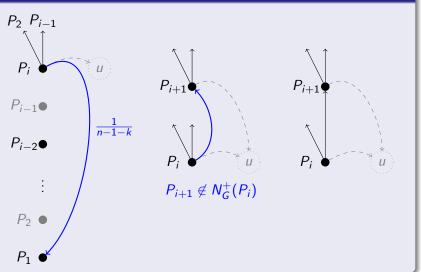


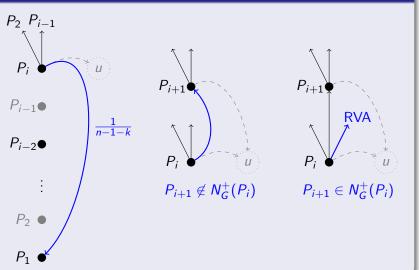


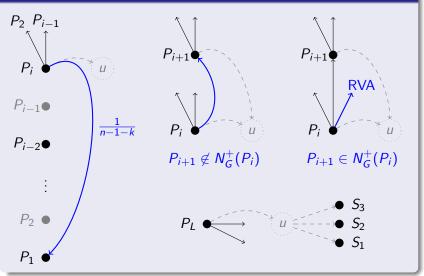


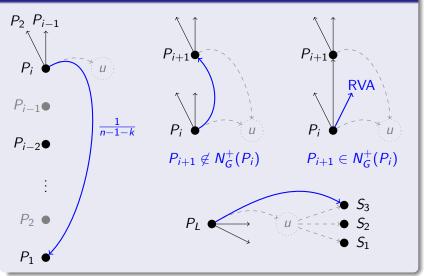


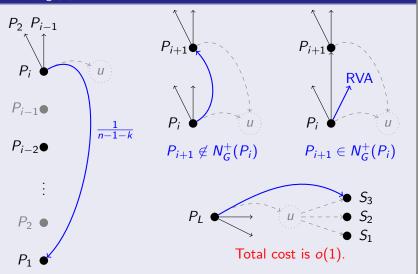






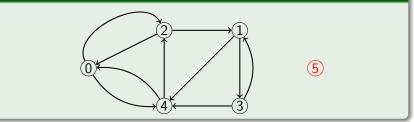




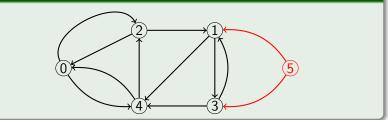


- Introduction
- Update Algorithms
 - Deletion Algorithms
 - Insertion Algorithms
- Conclusion

Insertion of vertex 5

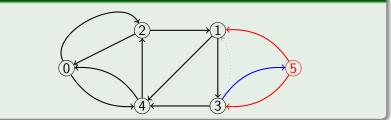


Insertion of vertex 5

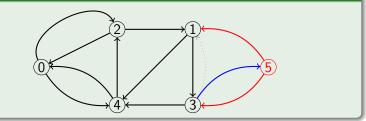


9/11

Insertion of vertex 5



Insertion of vertex 5



Simple Insertion Algorithm

- Draw k distinct vertices as successors, using RV
- Draw X ~ Binomial(n, k/n), then pick X distinct random vertices as predecessors, and steal one edge from each of them
- Asymptotic cost: k + k

Best insertion algorithm

- Build first the predecessors of *u* by:
 - Choosing the number of predecessors using Binomial(n, k/n)
 - Starting from a call to RV
 - Using the *lost* vertex of the redirected edge to save some calls to RV
 - Last predecessor is used to produce a first successor for u
- Then choose the k-1 other successors of u using RV

Cost and optimality

- Asymptotic Cost: k
- Optimal asymptotic cost, among bounded expected time algorithms

- Introduction
- Update Algorithms
 - Deletion Algorithms
 - Insertion Algorithms
- Conclusion

Conclusion

Distribution-preserving algorithms and *k*-out graphs

- Precise definition of distribution-preserving algorithms
- Several insertion and deletion algorithms for k-out graphs
- The most efficient algorithms are asymptotically optimal

Extension to more complex models

- Some *fixed* distribution for vertex out-degrees
- Undirected edges: e.g. regular graphs (difficult) or pairing models (easier)
- \bullet Geometric models: distribution of the network depends on some point set V

Connected works

- Possibility to maintain k-out graphs without knowing the size
- Expensive cost: difficult to simulate Binomial(n, k/n)

- Introduction
- Update Algorithms
 - Deletion Algorithms
 - Insertion Algorithms
- Conclusion
- Thank you for your attention

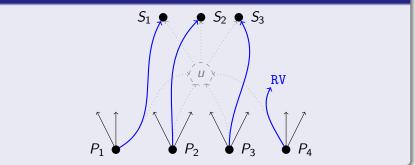
Without knowledge of the size ?

- Our algorithms need to simulate Bernoulli(a/(n-b)) and Binomial(n, k/n) using only RV
- Bernoulli(a/(n − b)) can be simulated by one call to RV, using two sets A, B ⊂ V such that |A| = a, |B| = b and A ∩ B = Ø
- With this simulation, all deletion/insertion algorithms presented here have the same cost: k for deletion, 2k + the cost of simulating the Binomial for insertion
- Binomial(n, k/n) is known to be simulable but actually only in $\mathcal{O}(n)$ expected calls to RV

Special cases

• Binomial(n, 1/n) can be simulated in 3.2 calls to RV

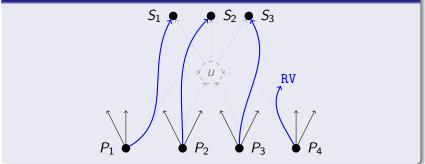
DEL2 Schema



DEL2 Algorithm

- For $1 \le i \le k$, suggest to P_i :
 - With probability $\frac{i-1}{n-1}$, a uniform vertex of $\{P_1, \ldots, P_{i-1}\}$
 - With the remaining probability, S_i
- For any further predecessors and unsuccessful suggestions, use RV instead

DEL2 Schema



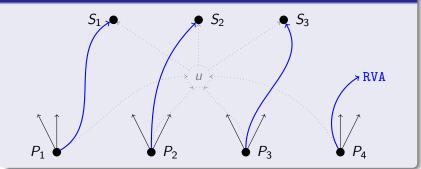
Cost

• $\simeq \sqrt{\frac{k}{2\pi}}$

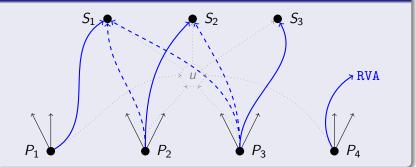
• Total asymptotic cost :
$$k \cdot \left(e^{-k} \cdot rac{k^k}{k!}\right)$$

Romaric Duvignau Local Update Algorithms for Random Graphs

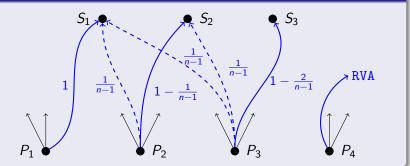
DEL2 Schema



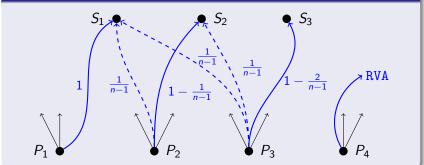
DEL2 Schema



DEL2 Schema



DEL2 Schema



Cost

• Total asymptotic cost : $k \cdot \left(e^{-k} \cdot \frac{k^k}{k!}\right)$

• $\simeq \sqrt{\frac{k}{2\pi}}$

Deletion Algorithm: DEL3 algorithm

$\rm DEL3$ Algorithm

- Replace *u* in *P_i*'s neighbourhood by (in order):
 - One of the j ≤ i − 1 acceptable and already processed predecessors, with probability j/(n − 1 − k)
 - 2 P_{i+1} , if the edge (P_i, P_{i+1}) does not already exist
 - Some call to RV avoiding the *j* acceptable predecessors and *P_i*'s successors, if (2) fails
- For the last predecessor, replace *u* by one of *u*'s successors (then some call to RV if the suggestion is not accepted)

$\rm DEL3$ Algorithm

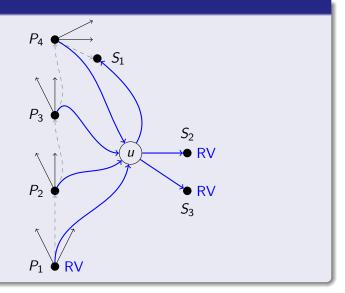
- Replace *u* in *P_i*'s neighbourhood by (in order):
 - One of the j ≤ i − 1 acceptable and already processed predecessors, with probability j/(n − 1 − k)
 - 2 P_{i+1} , if the edge (P_i, P_{i+1}) does not already exist
 - Some call to RV avoiding the *j* acceptable predecessors and *P_i*'s successors, if (2) fails
- For the last predecessor, replace *u* by one of *u*'s successors (then some call to RV if the suggestion is not accepted)

Cost

- With probability $1 O(\frac{1}{n})$, we do not call RV at all
- Total cost is o(1)

Insertion Algorithm: using similar ideas as DEL3

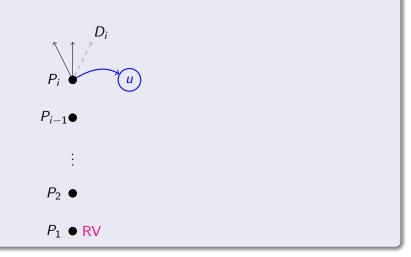
INS2 Schema



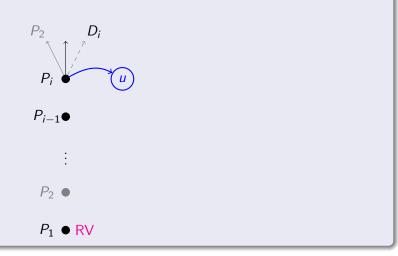
How to chose P_{i+1} ?



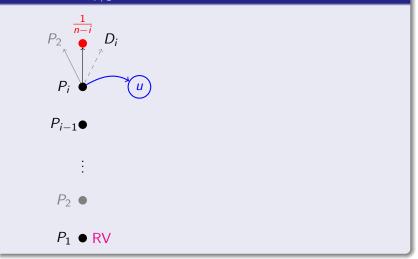
How to chose P_{i+1} ?



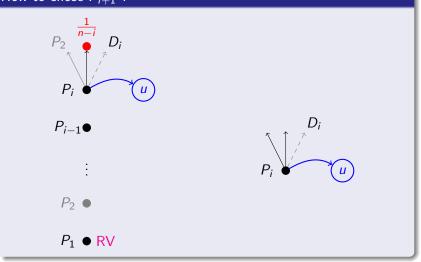
How to chose P_{i+1} ?



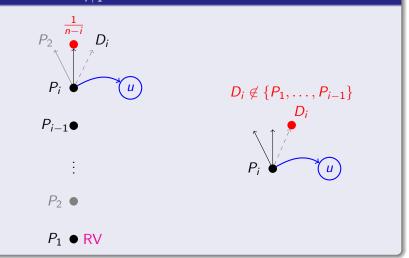
How to chose P_{i+1} ?



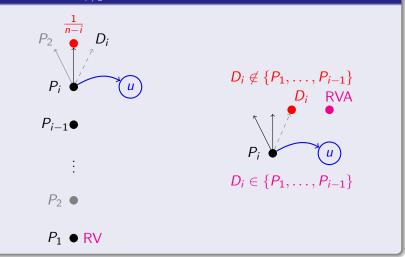
How to chose P_{i+1} ?



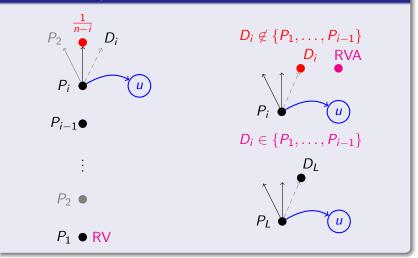
How to chose P_{i+1} ?



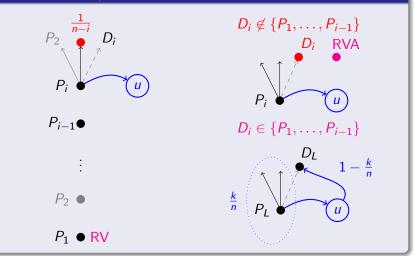
How to chose P_{i+1} ?



How to chose P_{i+1} ?



How to chose P_{i+1} ?



Insertion Algorithm: Cost and optimality of INS2 algorithm

Cost of INS2 Algorithm

- One call to RV is needed to start the algorithm
- With probability 1 − O(1/n), no calls to RV is needed in order to find P_{i+1} and k − 1 calls are enough for the last step
- The asymptotic total cost is then 1 + (k 1)

Insertion Algorithm: Cost and optimality of INS2 algorithm

Cost of INS2 Algorithm

- One call to RV is needed to start the algorithm
- With probability 1 − O(1/n), no calls to RV is needed in order to find P_{i+1} and k − 1 calls are enough for the last step
- The asymptotic total cost is then 1 + (k 1)

Optimality (sketch) of INS2 Algorithm

- By counting possible graphs, we get that $k \log_2(n) + O(1)$ new bits of information are needed to properly insert a vertex
- Each call to RV gives $\log_2(n)$ new bits of information
- Since other sources of randomness are available, one call to RV may be sufficient but results in a O(n) algorithm
- With asymptotic constant expected time complexity, *k* calls are needed

Insertion Algorithm: INS2 algorithm

${\rm Ins2}$ Algorithm

- Choose $L \sim \text{Binomial}(n, k/n)$, then build a *L*-subset $P = P_1, P_2, \dots, P_L$ over *V* for *u*'s predecessors
- P₁ is obtained through RV
- Then, for each 1 ≤ i ≤ L: one of P_i's outgoing edge is chosen to be redirected to u, and we keep track of D_i the deleted destination, then P_{i+1} is obtained by (in order):
 - One of the $j \le k-1$ acceptable vertices among $N^+(P_i)$, with probability j/(n-i)
 - 2 D_i , if it is acceptable
 - Some call to RV avoiding P_1, \ldots, P_i and $N_G^+(P_i)$, if (2) fails
- Once all predecessors have been chosen, the first successor for *u* is obtained as follows:
 - One vertex among N⁺(P_L) \ {D_L} ∪ {P_L} is chosen uniformly with probability k/n
 - 2 " D_L " is used otherwise with the remaining probability

• Finally, the remaining k-1 successors are obtained using RV

Distributed Model of computation

Local features

- Deletion : need only to examine the underlying undirected graph at distance 2 from *u*
- Insertions : need to examine neighborhoods of vertices returned by RV or along short paths
- Possible implementation in a decentralized message-passing model
- Assumptions : Knowing a vertex *identity* is sufficient to contact it and we have access to the RV primitive

Out of the scope of this work

- Unreliable network
- Concurrency