Automates cellulaires probabilistes à loi invariante markovienne

<u>Jérôme Casse</u> Jean-François Marckert

CNRS, LaBRI, Université de Bordeaux

19 mars 2014

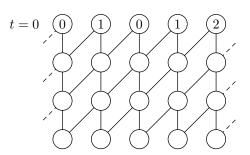
Jérôme Casse Aléa 2014 19 mars 2014 1 / 26

Définition

 $E_{\kappa} = \{0, \dots, \kappa\}$ un alphabet.

 $f: E_{\kappa}^2 \longrightarrow E_{\kappa}$ une règle locale.

L'automate cellulaire $A: E_{\kappa}^{\mathbb{Z}} \longrightarrow E_{\kappa}^{\mathbb{Z}}$ avec $w_i' = f(w_i, w_{i+1})$.



- $\kappa = 2$
- $f(a, b) = a + b \mod 3$.

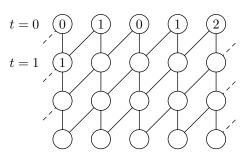
2 / 26

Définition

$$E_{\kappa} = \{0, \dots, \kappa\}$$
 un alphabet.

 $f: E_{\kappa}^2 \longrightarrow E_{\kappa}$ une règle locale.

L'automate cellulaire $A: E_{\kappa}^{\mathbb{Z}} \longrightarrow E_{\kappa}^{\mathbb{Z}}$ avec $w_i' = f(w_i, w_{i+1})$.



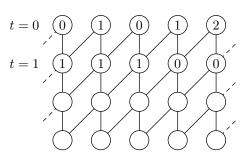
- $\kappa = 2$
- $f(a, b) = a + b \mod 3$.

Définition

$$E_{\kappa} = \{0, \dots, \kappa\}$$
 un alphabet.

 $f: E_{\kappa}^2 \longrightarrow E_{\kappa}$ une règle locale.

L'automate cellulaire $A: E_{\kappa}^{\mathbb{Z}} \longrightarrow E_{\kappa}^{\mathbb{Z}}$ avec $w_i' = f(w_i, w_{i+1})$.



- $\kappa = 2$
- $f(a, b) = a + b \mod 3$.

2 / 26

Définition

$$E_{\kappa} = \{0, \dots, \kappa\}$$
 un alphabet.

$$f: E_{\kappa}^2 \longrightarrow E_{\kappa}$$
 une règle locale.

L'automate cellulaire $A: E_{\kappa}^{\mathbb{Z}} \longrightarrow E_{\kappa}^{\mathbb{Z}}$ avec $w_i' = f(w_i, w_{i+1})$.

$$t = 0$$
 0 1 0 1 2
 $t = 1$ 1 1 1 0 0
 $t = 2$ 2 2 1 0 2
 $t = 3$ 1 0 1 2 0

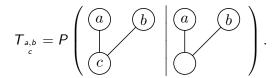
•
$$\kappa = 2$$

•
$$f(a, b) = a + b \mod 3$$
.

2 / 26

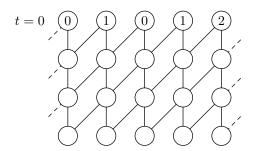
Automate cellulaire probabiliste (ACP)

f est remplacée par une dynamique locale aléatoire T où



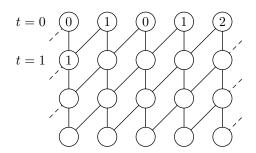
Jérôme Casse Aléa 2014 19 mars 2014 3 / 26

- $\kappa = 2$.
- $T_{a,b} = \underbrace{1_{\{c=a+b \mod 3\}} p}_{\text{avec proba } p, \text{ on fait le calcul d'avant}} + \underbrace{\frac{1-p}{3}}_{\text{avec proba } 1-p, \text{ on tire au hasard}}$



$$\bullet$$
 $\kappa = 2$.

 \bullet $T_{a,b} =$ $\mathbf{1}_{\{c=a+b \mod 3\}} p$ avec proba p, on fait le calcul d'avant



avec proba 1 - p, on tire au hasard

- $\kappa = 2.$
- $T_{a,b} = \underbrace{\mathbf{1}_{\{c=a+b \mod 3\}} p}_{\text{avec proba } p, \text{ on fait le calcul d'avant}} + \underbrace{\frac{1-p}{3}}_{\text{avec proba } 1-p, \text{ on tire au hasard}}$

t = 0 0 1 0 1 2 t = 1 1 1 t =

(F) 1

- $\kappa = 2.$
- $T_{a,b} = \underbrace{\mathbf{1}_{\{c=a+b \mod 3\}} p}_{\text{avec proba } p, \text{ on fait le calcul d'avant}} + \underbrace{\frac{1-p}{3}}_{\text{avec proba } 1-p, \text{ on tire au hasard}}$

t = 0 0 1 0 1 2 t = 1 1 1 2 t = 1

 \widehat{F} $\boxed{2}$

- \bullet $\kappa = 2$.
- $T_{a,b} = \underbrace{1_{\{c=a+b \mod 3\}} p}_{\text{avec proba } p, \text{ on fait le calcul d'avant}} + \underbrace{\frac{1-p}{3}}_{\text{avec proba } 1-p, \text{ on tire au hasard}}$

t = 0 0 1 0 1 2 t = 1 1 1 2 0 1 t = 2 1 0 2 1 0 t = 3 2 2 0 0 0 2

Automate cellulaire probabiliste (ACP)

Formellement,

ACP agit sur les mesures sur $E_{\kappa}^{\mathbb{Z}}$.

• Si, sur la ligne t, on a la loi μ , alors, sur la ligne t+1, on a la loi ν ,

$$\nu(b_1,\ldots,b_k) = \sum_{a \in E_{\kappa}^{k+1}} \mu(a) \prod_{i=1}^{k} T_{a_i,a_{i+1} \atop b_i}.$$

Jérôme Casse Aléa 2014 19 mars 2014 5 / 26

Intérêts des automates cellulaires probabilistes

- Combinatoire : dénombrement des animaux dirigés.
- Physique statistique : modèles à particules dures, Ising.

Jérôme Casse Aléa 2014 19 mars 2014 6 / 26

Loi invariante par un ACP

Définition

 μ est invariante par A si l'image de μ est μ .

Jérôme Casse Aléa 2014 19 mars 2014 7 / 26

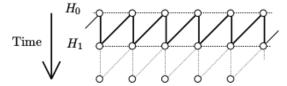
Littérature sur les ACP et leurs lois invariantes

- Étude des ACP à loi invariante markovienne :
 Belyaev & al. (1969); Toom & al. (1990); Bousquet-Mélou (1998).
- Aussi connus sous le nom de modèles de gaz en combinatoire :
 Dhar (1982); Viennot (1986); Bétréma et Penaud (1993);
 Bousquet-Mélou (1998); Le Borgne et Marckert (2007); Albenque (2009); Marckert (2012).
- Étude des ACP à loi invariante gibbsienne : Dai-Pra, Louis et Roelly (2001).
- Étude des ACP à loi invariante iid : Mairesse et Marcovici (2012) (2014).
- Unicité de la mesure invariante pour les ACP à taux strictement positifs dans le cas $\kappa=1$ n'est pas connue.

Structures

Deux structures :

- la ligne horizontale (H),
- le zig-zag horizontal (HZ).



Objectif de l'exposé

 On va décrire l'ensemble des ACP qui possède une chaîne de Markov comme loi invariante.

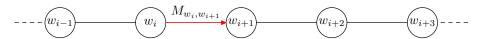
Chaîne de Markov sur H

Définition

Soit $(M_{a,b})_{a,b\in E_\kappa}$ une matrice de probabilité. La chaîne de Markov de noyau M sur H est une mesure sur H qui vérifie

$$P(W_{i+1} = w_{i+1}|W_i = w_i, W_{i-1} = w_{i-1}, ...)$$

= $P(W_{i+1} = w_{i+1}|W_i = w_i) = M_{w_i, w_{i+1}}.$



Chaîne de Markov sur HZ

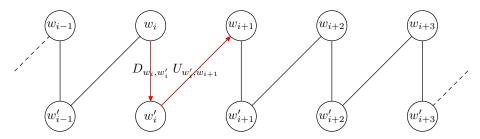
Définition

Soient $(D_{a,b})_{a,b\in E_\kappa}$ et $(U_{a,b})_{a,b\in E_\kappa}$ deux matrices de probabilité. La chaîne de Markov de noyaux (D,U) sur HZ est une mesure sur HZ qui vérifie

$$P(W_i' = w_i' | W_i = w_i, W_{i-1}' = w_{i-1}', \ldots) = D_{w_i, w_i'}$$

et

$$P\left(W_{i+1} = w_{i+1} | W_i' = w_i', W_i = w_i, \ldots\right) = U_{w_i', w_{i+1}}.$$



ACP à taux strictement positifs

Définition

Un ACP à taux strictement positifs vérifie : pour tous a, b, c,

$$T_{a,b}>0.$$

Jérôme Casse Aléa 2014 19 mars 2014 13 / 26

Objectif de l'exposé

 On va décrire l'ensemble des ACP qui possède une chaîne de Markov comme loi invariante.

Lemme 16.2 de Toom & al. (1990)

Lemme

M = DU = UD avec U et D deux matrices stochastiques de taille $n \times n$. Alors la chaîne de Markov M est invariante par A si pour tous a, b, c,

$$T_{a,b} = \frac{D_{a,c}U_{c,b}}{M_{a,b}}.$$

15 / 26

Belyaev & al. (1969)

Théorème

Soit $A = (\mathbb{Z}, E_1, T)$ un ACP. A admet une chaîne de Markov invariante ssi :

- (i) $T_{0,0} T_{1,1} T_{1,0} T_{0,1} = T_{1,1} T_{0,0} T_{0,1} T_{1,0}$ ou
- (ii) $T_{0,0} + T_{1,1} = T_{0,1} + T_{1,0} = 1$ ou
- $(iii) \ T_{\stackrel{0,1}{1}} T_{\stackrel{1,0}{0}} = T_{\stackrel{1,1}{0}} T_{\stackrel{0,0}{0}} \ ou \ T_{\stackrel{1,0}{1}} T_{\stackrel{0,1}{0}} = T_{\stackrel{1,1}{0}} T_{\stackrel{0,0}{0}}.$

Le résultat

Théorème

Soit $A = (\mathbb{Z}, E_{\kappa}, T)$ un ACP. Alors A admet une chaîne de Markov invariante sur HZ ssi

- (i) $T_{0,0} T_{a,b} T_{a,0} T_{0,b} = T_{a,b} T_{0,0} T_{0,b} T_{a,0}$ pour tous a, b, c et
- (ii) $D^{\gamma}U^{\gamma} = U^{\gamma}D^{\gamma}$.

Dans ce cas, la chaîne de Markov invariante sur HZ a pour noyaux (D^{γ}, U^{γ}) .

Mais que sont D^{γ} et U^{γ} ? Nous allons voir comment on peut les calculer à partir de T.

Que sont D^{γ} et U^{γ} ?

Entrée : $\left(T_{\stackrel{a,b}{c}}\right)$ avec $a,b,c\in E_{\kappa}.$

- 1. $A_1 = \left(T_{i,i\atop j}\right)_{i,j\in E_\kappa}$: ν le vecteur propre à gauche avec $\sum_{x} \nu_x = 1$.
- 2. $A_2 = \left(\frac{T_{a,a}}{0}\nu_a\right)_{d,a\in E_\kappa}$: γ le vecteur propre à gauche.
- 3. Les deux noyaux de Markov (D^{γ}, U^{γ}) :

$$D_{a,c}^{\gamma} = \frac{\sum_{k} \frac{\gamma_{k}}{T_{a,k}} T_{a,k}}{\sum_{k} \frac{\gamma_{k}}{T_{a,k}}} \text{ et } U_{c,b}^{\gamma} = \frac{\frac{\gamma_{b}}{T_{0,b}} T_{0,b}}{\sum_{k} \frac{\gamma_{k}}{T_{0,k}} T_{0,k}}.$$

Jérôme Casse Aléa 2014 19 mars 2014 18 / 26

Rappel : le résultat

Théorème

Soit $A = (\mathbb{Z}, E_{\kappa}, T)$. Alors A admet une chaîne de Markov invariante sur HZ ssi

- (i) $T_{0,0} T_{a,b} T_{a,0} T_{0,b} = T_{a,b} T_{0,0} T_{0,b} T_{a,0} pour tous a, b, c et$
- (ii) $D^{\gamma}U^{\gamma} = U^{\gamma}D^{\gamma}$.

Amélioration du lemme de Toom & al. (1990)

Lemme

Soit $A = (\mathbb{Z}, E_{\kappa}, T)$. La chaîne de Markov sur HZ de noyaux (D, U) est invariante par A ssi :

(i)
$$T_{a,b} = \frac{D_{a,c}U_{c,b}}{(DU)_{a,b}}$$
 pour tous a, b, c et

(ii)
$$DU = UD$$
.

Un premier lemme

Lemme

Soit $A = (\mathbb{Z}, E_{\kappa}, T)$. Alors, les trois conditions suivantes sont équivalentes :

(a) il existe D et U matrices stochastiques tel que, pour tous a, b, c,

$$T_{a,b} = \frac{D_{a,c}U_{c,b}}{(DU)_{a,b}},$$

- (b) pour tous $a,b,c \in E_{\kappa}$, $T_{\stackrel{0,0}{0}} T_{\stackrel{a,b}{0}} T_{\stackrel{a,0}{c}} T_{\stackrel{0,b}{c}} = T_{\stackrel{a,b}{c}} T_{\stackrel{0,0}{c}} T_{\stackrel{0,b}{0}} T_{\stackrel{a,0}{0}}$,
- (c) pour tous $a, a', b, b', c, c' \in E_{\kappa}$,

$$T_{a',b'} \atop c' T_{a,b} T_{a,b'} \atop c' T_{a',b} = T_{a,b} T_{a',b'} \atop c T_{a',b} T_{a,b'}.$$

Jérôme Casse Aléa 2014 19 mars 2014 21 / 26

Un premier lemme

Lemme

Soit $A = (\mathbb{Z}, E_{\kappa}, T)$. Alors, les trois conditions suivantes sont équivalentes :

(a) il existe D et U matrices stochastiques tel que, pour tous a, b, c,

$$T_{a,b} = \frac{D_{a,c}U_{c,b}}{(DU)_{a,b}},$$

- (b) pour tous $a, b, c \in E_{\kappa}$, $T_{a,b} = \frac{T_{0,0} T_{a,0} T_{0,b} T_{a,b}}{T_{a,0} T_{0,b} T_{0,b}}$,
- (c) pour tous $a, a', b, b', c, c' \in E_{\kappa}$,

$$T_{a',b'} T_{a,b} T_{a,b'} T_{a',b'} = T_{a,b} T_{a',b'} T_{a',b} T_{a,b'}.$$

Jérôme Casse Aléa 2014 19 mars 2014 21 / 26

Un deuxième lemme

Lemme

Soit
$$A = (\mathbb{Z}, E_{\kappa}, T)$$
.
Si $T_{a,b} = \frac{D_{a,c} U_{c,b}}{(DU)_{a,b}}$, alors

$$D_{a,c}^{\eta} = \frac{\sum_{k} \frac{\eta_{k}}{T_{a,k}} T_{a,k}}{\sum_{k} \frac{\eta_{k}}{T_{a,k}}} \text{ et } U_{c,b}^{\eta} = \frac{\frac{\eta_{b}}{T_{0,b}} T_{0,b}}{\sum_{k} \frac{\eta_{k}}{T_{0,k}} T_{0,k}}$$

οù η est une mesure de probabilité (à taux strictement positifs) sur E_{κ} .

• $\eta_b = U_{0,b}$.

Un troisième lemme

$$+ DU = UD$$

Lemme

Soit $A = (\mathbb{Z}, E_{\kappa}, T)$ vérifiant les conditions rouges et si, en plus, pour tout $a \in E_{\kappa}$, $(D^{\eta}U^{\eta})_{a,a} = (U^{\eta}D^{\eta})_{a,a}$, alors $\eta = \gamma$.

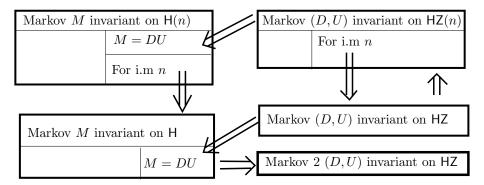
Jérôme Casse Aléa 2014 19 mars 2014 23 / 26

Extension 1 : le zigzag torique

- Chaîne de Markov cyclique [Marie Albenque].
- Les conditions $T_{0,0}$ $T_{a,b}$ $T_{a,0}$ $T_{0,b} = T_{a,b}$ $T_{0,0}$ $T_{0,b}$ $T_{a,0}$ ne changent pas.
- La condition $(D^{\gamma}U^{\gamma}) = (U^{\gamma}D^{\gamma})$ devient, pour tout $1 \le k \le \kappa + 1$,

$$\mathsf{Diagonale}\left((D^\gamma U^\gamma)^k\right) = \mathsf{Diagonale}\left((U^\gamma D^\gamma)^k\right).$$

Classification des automates cellulaires à loi Markovienne



Merci

Jérôme Casse Aléa 2014 19 mars 2014 26 / 26