
Compter et générer aléatoirement des
permutations décrites par un langage régulier1

Nicolas Basset

University of Oxford

Journée aléa 2014

1sera présenté à LATIN 2014
1/20

Signature of a permutation

n

σ(n)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

6

7

2

4

5

1

3

ascent

ascent

ascent

ascent

descent

descent

One line notation:

σ = 6724512

Signature:

sg(σ) = adaada

2/20

Two problem statements
Given a regular language L ⊆ {a,d}∗, we are interested in

sg−1(L) = {σ | sg(σ) ∈ L}.

Problem 1: Enumeration

Design an algorithm that compute a closed form formula for the
exponential generating function:

FL(z) =
∑

σ, sg(σ)∈L

z |σ|

|σ|!
=
∑

n≥1

αn(L)
zn

n!

where αn(L) = |{σ ∈ Sn | sg(σ) ∈ L}|

Problem 2: Uniform sampling

Construct a uniform random sampler for {σ ∈ Sn | sg(σ) ∈ L}.
That is Prob(output = σ) = 1

αn(L)
.

3/20

Examples

Examples of closed form formula for FL

• Alternating permutations: F(ad)∗(a+ǫ) = tan(z) + sec(z)− 1

• No two consecutive descents:
F(a+da)∗(d+ǫ)(z) =

3 cos(z
√
3/2)+

√
3 sin(z

√
3/2)

[2 cos(z
√
3/2)−1][2 cos(z

√
3/2)+1]

ez/2 − 1

• Up-up-down-down permutations :
F(aadd)∗(aa+ǫ) =

sinh z−sin z+sin(z) cosh z+sinh(z) cos z
1+cos(z) cosh z

• Even number of descents (homework).

A permutation without 2 consecutive descents (n = 100)

[75, 76, 7, 72, 81, 64, 77, 55, 97, 15, 95, 18, 98, 32, 93, 17, 67, 12, 49, 85,
22, 50, 21, 68, 57, 87, 27, 41, 52, 61, 91, 26, 30, 59, 33, 73, 5, 54, 39, 43,
28, 44, 14, 62, 11, 80, 40, 47, 45, 66, 56, 69, 86, 19, 78, 90, 37, 71, 51, 99,
13, 48, 4, 34, 83, 100, 1, 6, 46, 82, 9, 35, 60, 29, 84, 20, 58, 79, 2, 38, 96,
10, 23, 88, 3, 53, 94, 36, 89, 16, 31, 24, 63, 8, 74, 42, 65, 70, 92, 25]

4/20

Related work

Descent pattern avoidance [Ehrenborg, Jung 2013]

Finite set F of forbidden words → language of finite type
XF = {w ∈ {a,d}∗ | wi · · ·wj 6∈ F}
Descent pattern avoidance: sg−1(XF) = {σ | σ avoids F}.

Example

Xaa,dd: alternating permutations σ1 < σ2 > σ3 <

5/20

Related work

Descent pattern avoidance [Ehrenborg, Jung 2013]

Finite set F of forbidden words → language of finite type
XF = {w ∈ {a,d}∗ | wi · · ·wj 6∈ F}
Descent pattern avoidance: sg−1(XF) = {σ | σ avoids F}.

Example

Xaa,dd: alternating permutations σ1 < σ2 > σ3 <

Recall: language of finite type cannot express all regular languages:
e.g. even number of descents.

5/20

Related work

Descent pattern avoidance [Ehrenborg, Jung 2013]

Finite set F of forbidden words → language of finite type
XF = {w ∈ {a,d}∗ | wi · · ·wj 6∈ F}
Descent pattern avoidance: sg−1(XF) = {σ | σ avoids F}.

Example

Xaa,dd: alternating permutations σ1 < σ2 > σ3 <

Recall: language of finite type cannot express all regular languages:
e.g. even number of descents.

Prescribed descent set ([Marchal 2013])

Random sampling when L = w with w ∈ {a,d}∗.
Generating function when L = Pref(w∗) with w ∈ {a,d} (i.e. for
cyclic automata).

5/20

Methodology

• Geometric interpretation of the two problems.

• Reduction to volumetry of some timed language.

• Solutions based on volume equations for timed language.

6/20

A geometric interpretation

Order polytopes of permutation and words

• O(σ) = {~ν ∈ [0, 1]n | νi < νj iff σi < σj for i 6= j}.

• Remark [0, 1]n = ∪σ∈Sn
O(σ) and VolO(σ) = 1/n!

• O(u) =def ⊔sg(σ)=uO(σ) e.g.
O(daa) = O(2134) ⊔ O(3124) ⊔ O(4123).

• Vol(O(u)) = |{σ | sg(σ) = u}|/n!.

Volume Generating Function

gL(z) =
∑

σ|sg(σ)∈L

z |σ|

|σ|!
=
∑

u∈L
Vol(O(u))z |u|+1.

7/20

The straight-turn encoding

x

y

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

6

7

2

4

5

1

3

Turn

Turn

Straight

Turn

Turn

a d

d|T

a|S d|S

a|T

8/20

The straight-turn encoding

x

y

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

6

7

2

4

5

1

3

Turn

Straight

Turn

Turn

Straight

Turn

Turn

a d

d|T

a|S d|S

a|T

8/20

Adding time and clocks to words.

p q

T

S

T

• a word: SST ∈ {S, T}∗

• a timed word (0.5, S)(0.3, S)(0.1, T) ∈ ([0, 1] × {S, T})∗

• a clock word 0
(0.5,S)
−−−−→ 0.5

(0.3,S)
−−−−→ 0.8

(0.1,T)
−−−−→ 0.1

The straight and turn timed transitions

Straight: x
(t,S)
−−−→ x + t if x + t ≤ 1

Turn: x
(t,T)
−−−→ t if x + t ≤ 1

9/20

The timed semantic of a language ⊆ {S, T}∗

0
(0.5,S)
−−−−→ 0.5

(0.3,S)
−−−−→ 0.8

(0.1,T)
−−−−→ 0.1 = 0

(0.5,0.3,0.1)SST
−−−−−−−−−→ 0.1

Timed semantics of L′′ ⊆ {S, T}∗

• The timed polytope associated to w ∈ {S, T}∗ is

Pw = {~t | 0
(~t,w)
−−−→ y for some y ∈ [0, 1]}.

e.g. (0.5, 0.3, 0.1) ∈ PSST.

• The timed semantics L′′ ⊆ {S, T}∗ is

L
′′ = {(~t,w)|~t ∈ Pw and w ∈ L′′} = ∪w∈LPw × {w}.

10/20

Volume generating function of L′′ ⊆ {S, T}∗

Two timed polytopes

PTTT

t1 + t2 ≤ 1 and t2 + t3 ≤ 1

PSSS :

t1 + t2 + t3 ≤ 1

• Recall L′′ = ∪w∈LPw × {w}.

• Vol(L′′
n) =def

∑

w∈L′′n Vol(Pw)

• Volume Generating Function of L′′:
VGF (L′′)(z) =def

∑

n≥0 Vol(L
′′
n)z

n =
∑

w∈L′′ Vol(Pw)z
|w |.

11/20

The key lemma

Two step bijection: prolongating and then encoding in {S, T}∗

h :

{

L → L′′ =def h(L)
u 7→ w encoding of ua in {S, T}∗.

Remark: easy to compute when a DFA for L′′ from a DFA for L.

No two consecutive descents: L, La ∪ {ǫ}, L′′ ∪ {ǫ}

p q

d

a

a

p q

d

a

a

p q

T

S

T

Key lemma

For every w = h(u) ∈ L′′, there is a volume preserving
transformation φw : L′′

w → O(u) (computable in O(|w |)).
12/20

Reducing the two problems

Reduction for Problem 1 (exponential generating function)

FL(z) =
∑

u∈L
Vol(O(u))z |u|+1 =

∑

w∈L′′
Vol(L′′

w)z
|w | = VGF (L′′)(z).

(Recall: volume preserving transformation φw : L′′
w → O(u).)

Reduction for Problem 2 (uniform sampling)

1. Choose uniformly an n-length timed word (~t,w) ∈ L
′′
n;

2. compute ~ν = φw (~t) ∈ On(L);

3. return σ such that ~ν ∈ O(σ) (using a sort).

13/20

Reducing the two problems

Reduction for Problem 1 (exponential generating function)

FL(z) =
∑

u∈L
Vol(O(u))z |u|+1 =

∑

w∈L′′
Vol(L′′

w)z
|w | = VGF (L′′)(z).

(Recall: volume preserving transformation φw : L′′
w → O(u).)

Reduction for Problem 2 (uniform sampling)

1. Choose uniformly an n-length timed word (~t,w) ∈ L
′′
n;

2. compute ~ν = φw (~t) ∈ On(L);

3. return σ such that ~ν ∈ O(σ) (using a sort).

Now it suffices to solve the problems for timed automata.

13/20

Language and VGF equations

No two consecutive descents

p q

T

S

T

parametrized language equations

Lp(x) = ∪t≤1−x(t, S)Lp(x + t)∪ ∪t≤1−x(t, T)Lq(t) ∪ ǫ
Lq(x) = ∪t≤1−x(t, T)Lp(t)

parametrized VGF

fp(x , z) = z
∫

t≤1−x
fp(x + t, z)dt+ z

∫

t≤1−x
fq(t, z)dt + 1

fq(x , z) = z
∫

t≤1−x
fp(t, z)dt

14/20

The matrix notation

~f (x , z) = zMS

∫ 1

x

~f (s, z)ds + zMT

∫ 1−x

0

~f (t, z)dt + ~F

No two consecutive descents

p q

T

S

T

MS =

(

1 0
0 0

)

, MT =

(

0 1
1 0

)

, ~F =

(

1
0

)

.

15/20

Solving the equation

~f (x , z) = zMS

∫ 1

x

~f (s, z)ds + zMT

∫ 1−x

0

~f (t, z)dt + ~F

∂

∂x

(

~f (x , z)
~f (1− x , z)

)

= z

(

−MS −MT

MT MS

)

(

~f (x , z)
~f (1− x , z)

)

(

~f (1, z)
~f (0, z)

)

= exp

[

z

(

−MS −MT

MT MS

)]

(

~f (0, z)
~f (1, z)

)

and ~f (1, z) = ~F

An algorithm to compute FL(z) = fq0(0, z)

1. Compute

(

A1(z) A2(z)
A3(z) A4(z)

)

=def exp

[

z

(

−MS −MT

MT MS

)]

;

2. return FL(z) the component of
~f (0, z) = [A1(z)]

−1[I − A2(z)]~F = [I − A3(z)]
−1A4(z)~F

corresponding to the initial state q0.
16/20

A classical example: the alternating permutations

e.g. σ = 94738251

T

Here ~F = MT = (1), MS = (0).

exp

[

z

(

−MS −MT

MT MS

)]

= exp

(

0 −z

z 0

)

=

(

cos z − sin z
sin z cos z

)

(Recall FL(z) = [A1(z)]
−1[I − A2(z)]~F = [I − A3(z)]

−1A4(z)~F)

FL(z) =
1 + sin z

cos z
=

cos z

1− sin z

17/20

Generating timed word using the recursive method

Recursive language equations and volume equations

Lp,n(x) = ∪t≤1−x(t, S)Lp,n−1(x + t)∪ ∪t≤1−x(t, T)Lq,n−1(t)

vp,n(x) =
∫ 1−x

0 vp,n−1(x + t)dt+
∫ 1−x

0 vq,n−1(t)dt

How can one generate a timed word in Lp,n(x)?

18/20

Generating timed word using the recursive method

Recursive language equations and volume equations

Lp,n(x) = ∪t≤1−x(t, S)Lp,n−1(x + t)∪ ∪t≤1−x(t, T)Lq,n−1(t)

vp,n(x) =
∫ 1−x

0 vp,n−1(x + t)dt+
∫ 1−x

0 vq,n−1(t)dt

How can one generate a timed word in Lp,n(x)?

• Choose between S and T according to (PS, 1− PS) with

PS =
∫ 1−x

0 vp,n−1(x + t)dt/vp,n(x).

• If T is chosen then choose t according to the density:
vq,n−1(t)1t<1−x∫ 1−x
0 vq,n−1(t)dt

.

• If S is chosen...

18/20

Generating timed word using the recursive method

Recursive language equations and volume equations

Lp,n(x) = ∪t≤1−x(t, S)Lp,n−1(x + t)∪ ∪t≤1−x(t, T)Lq,n−1(t)

vp,n(x) =
∫ 1−x

0 vp,n−1(x + t)dt+
∫ 1−x

0 vq,n−1(t)dt

How can one generate a timed word in Lp,n(x)?

• Choose between S and T according to (PS, 1− PS) with

PS =
∫ 1−x

0 vp,n−1(x + t)dt/vp,n(x).

• If T is chosen then choose t according to the density:
vq,n−1(t)1t<1−x∫ 1−x
0 vq,n−1(t)dt

.

• If S is chosen...

• Repeat recursively.

18/20

Generating timed word using the recursive method

Recursive language equations and volume equations

Lp,n(x) = ∪t≤1−x(t, S)Lp,n−1(x + t)∪ ∪t≤1−x(t, T)Lq,n−1(t)

vp,n(x) =
∫ 1−x

0 vp,n−1(x + t)dt+
∫ 1−x

0 vq,n−1(t)dt

How can one generate a timed word in Lp,n(x)?

• Choose between S and T according to (PS, 1− PS) with

PS =
∫ 1−x

0 vp,n−1(x + t)dt/vp,n(x).

• If T is chosen then choose t according to the density:
vq,n−1(t)1t<1−x∫ 1−x
0 vq,n−1(t)dt

.

• If S is chosen...

• Repeat recursively.

Need precomputation of vq,k , q ∈ Q, k = 0..n. Complexity
polynomial: O(|Q|n2). The generation itself is linear.

18/20

Conclusion

What we have seen

1. Bijection: permutations ↔ order simplices.

2. Volume preserving transformation between order polytopes
and timed polytopes (=chain polytopes).

3. Solution of the problems using new kind of timed languages
involving S and T.

Further works

1. Improvement of the algorithms.

2. Precise growth rate of αn(L).

3. Random generation based on maximal entropy stochastic
process over runs of a timed automaton [ICALP’13].

4. Extension to non regular languages like context free languages
(S → ε | aSdS).

19/20

Bonus: periodic descent set (see also [Marchal], [Luck])
Periodic language L = Pref(w∗) with w ∈ {a,d} iff recognized by
a cyclic automaton with p =def |w | states.

M2p =

(

−MS −MT

MT MS

)2p

= (−1)p I2p

(

e.g .

(

0 −1
1 0

)2

= −I2

)

20/20

Bonus: periodic descent set (see also [Marchal], [Luck])
Periodic language L = Pref(w∗) with w ∈ {a,d} iff recognized by
a cyclic automaton with p =def |w | states.

M2p =

(

−MS −MT

MT MS

)2p

= (−1)p I2p

(

e.g .

(

0 −1
1 0

)2

= −I2

)

Theorem

FL(z) = R(g0,p(z), . . . , g2p−1,p(z)) with R a rational function and

gk,p(z) =
∑

m≥0

(−1)pm
zk+2pm

(k + 2pm)!

(exp(zM) =
∑2p−1

k=0 gk,p(z)M
k ; ~f (0, z) = [A1(z)]

−1[I − A2(z)]~F)

g0,1(z) = cos z ; g1,1(z) = sin z ;
g0,2(z) = [cosh z + cos z]/2; g1,2(z) = [sinh z + sin z]/2;
g2,2(z) = [cosh z − cos z]/2; g3,2(z) = [sinh z − sin z]/2;

20/20

